- theano vs tensorflow 內(nèi)容精選 換一換
-
來(lái)自:百科
- theano vs tensorflow 相關(guān)內(nèi)容
-
本實(shí)驗(yàn)指導(dǎo)用戶(hù)在華為云ModelArts平臺(tái)對(duì)預(yù)置的模型進(jìn)行重訓(xùn)練,快速構(gòu)建 人臉識(shí)別 應(yīng)用。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 掌握MXNet AI引擎用法; 掌握基于MXNet構(gòu)建人臉識(shí)別神經(jīng)網(wǎng)絡(luò); 掌握華為云ModelArts SDK創(chuàng)建訓(xùn)練作業(yè)、模型部署和模型測(cè)試; 掌握ModelArts自研分布式訓(xùn)練框架MoXing。來(lái)自:百科
- theano vs tensorflow 更多內(nèi)容
-
次拷貝,多種計(jì)算引擎,存儲(chǔ)和計(jì)算資源靈活配比,各自按需擴(kuò)縮,性?xún)r(jià)比領(lǐng)先業(yè)界30% 極致性能體驗(yàn) 通過(guò)結(jié)合硬件、數(shù)據(jù)組織、計(jì)算引擎、AI智能調(diào)優(yōu)四級(jí)垂直優(yōu)化,全棧式性能加速,同時(shí)具備百萬(wàn)規(guī)模元數(shù)據(jù)毫秒級(jí)響應(yīng),為用戶(hù)提供極致性能體驗(yàn) 領(lǐng)先開(kāi)源技術(shù) 主流引擎Spark、Hive、Fli來(lái)自:專(zhuān)題華為云計(jì)算 云知識(shí) 圖引擎服務(wù) 圖引擎服務(wù) 時(shí)間:2020-12-09 09:41:49 圖引擎服務(wù)(Graph Engine Service),是針對(duì)以“關(guān)系”為基礎(chǔ)的“圖”結(jié)構(gòu)數(shù)據(jù),進(jìn)行查詢(xún)、分析的服務(wù)。廣泛應(yīng)用于社交關(guān)系分析、推薦、精準(zhǔn)營(yíng)銷(xiāo)、輿情及社會(huì)化聆聽(tīng)、信息傳播、防欺詐等具有豐富關(guān)系數(shù)據(jù)的場(chǎng)景。來(lái)自:百科云原生 數(shù)據(jù)湖 MRS(MapReduce Service)為客戶(hù)提供Hudi、ClickHouse、Spark、Flink、Kafka、HBase等Hadoop生態(tài)的高性能大數(shù)據(jù)組件,支持?jǐn)?shù)據(jù)湖、 數(shù)據(jù)倉(cāng)庫(kù) 、BI、AI融合等能力。 MRS 同時(shí)支持混合云和公有云兩種形態(tài):混合云版本,一個(gè)架構(gòu)實(shí)現(xiàn)離線(xiàn)、實(shí)來(lái)自:專(zhuān)題云知識(shí) 流生態(tài)系統(tǒng)是什么 流生態(tài)系統(tǒng)是什么 時(shí)間:2020-09-24 15:58:02 流生態(tài)系統(tǒng)基于Flink和Spark雙引擎,完全兼容Flink/Storm/Spark開(kāi)源社區(qū)版本接口,并且在此基礎(chǔ)上做了特性增強(qiáng)和性能提升,為用戶(hù)提供易用、低時(shí)延、高吞吐的 實(shí)時(shí)流計(jì)算服務(wù) 。 實(shí)時(shí)來(lái)自:百科Chassis應(yīng)用如何接入ServiceComb引擎 微服務(wù)引擎 微服務(wù)引擎(Cloud Service Engine, CS E),是用于微服務(wù)應(yīng)用的云中間件,支持華為云自研的注冊(cè)配置中心Servicecomb引擎和開(kāi)源增強(qiáng)的注冊(cè)配置中心Nacos引擎。用戶(hù)可結(jié)合其他云服務(wù),快速構(gòu)建云原生微來(lái)自:專(zhuān)題數(shù)據(jù)湖探索 (Data Lake Insight,簡(jiǎn)稱(chēng) DLI )是完全兼容Apache Spark和Apache Flink生態(tài),實(shí)現(xiàn)批流一體的Serverless大數(shù)據(jù)計(jì)算分析服務(wù)。DLI支持多模引擎,企業(yè)僅需使用SQL或程序就可輕松完成異構(gòu)數(shù)據(jù)源的批處理、流處理、內(nèi)存計(jì)算、機(jī)器學(xué)習(xí)等,挖掘和探索數(shù)據(jù)價(jià)值。來(lái)自:百科
- Tensorflow,pytorch,Caffe,MXNet,PaddlePaddle,THeano算法框架哪家強(qiáng)?
- TensorFlow vs. PyTorch:深度學(xué)習(xí)框架之爭(zhēng)
- 《智能系統(tǒng)與技術(shù)叢書(shū) 深度學(xué)習(xí)實(shí)踐:基于Caffe的解析》—1.2深度學(xué)習(xí)工具簡(jiǎn)介
- 深度學(xué)習(xí)框架指南
- 《深度學(xué)習(xí)與圖像識(shí)別:原理與實(shí)踐》—2 圖像識(shí)別前置技術(shù)
- 《Keras深度學(xué)習(xí)實(shí)戰(zhàn)》—1.2.2 怎么做
- 《Python深度學(xué)習(xí)實(shí)戰(zhàn):基于TensorFlow和Keras的聊天機(jī)器人》 —2.3 Keras聯(lián)合TensorFlow
- DL中版本配置問(wèn)題:TensorFlow、Keras、Python版本完美搭配推薦
- 《深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)從入門(mén)到精通》——1.6 卷積神經(jīng)網(wǎng)絡(luò)的平臺(tái)和工具
- 《Python大規(guī)模機(jī)器學(xué)習(xí)》—1.3.4 ?Scikit-learn