- tensorflow預(yù)訓(xùn)練模型 內(nèi)容精選 換一換
-
全球首個(gè)精度超過(guò)傳統(tǒng)數(shù)值預(yù)報(bào)方法的AI預(yù)測(cè)模型,預(yù)測(cè)速度提升10000倍 了解詳情 盤(pán)古NLP大模型 業(yè)界首個(gè)超千億參數(shù)的中文預(yù)訓(xùn)練大模型,利用大數(shù)據(jù)預(yù)訓(xùn)練、對(duì)多源豐富知識(shí)相結(jié)合,并通過(guò)持續(xù)學(xué)習(xí)吸收海量文本數(shù)據(jù),不斷提升模型的效果。 了解詳情 盤(pán)古CV大模型 基于海量圖像、視頻數(shù)據(jù)和盤(pán)來(lái)自:專(zhuān)題使用開(kāi)發(fā)環(huán)境將本地開(kāi)發(fā)的MindSpore模型遷移至云上訓(xùn)練???? 本案例介紹如何在本地進(jìn)行MindSpore模型開(kāi)發(fā),并將模型遷移至ModelArts訓(xùn)練。ModelArts支持使用PyCharm進(jìn)行“混動(dòng)”開(kāi)發(fā):“混動(dòng)”開(kāi)發(fā)表示代碼開(kāi)發(fā)和調(diào)試使用本地IDE,按需使用遠(yuǎn)程資源和環(huán)境調(diào)試和訓(xùn)練模型。通過(guò)“混動(dòng)來(lái)自:專(zhuān)題
- tensorflow預(yù)訓(xùn)練模型 相關(guān)內(nèi)容
-
1、廣東工業(yè)大學(xué)先鋒教師高懷恩計(jì)算機(jī)視覺(jué)理論基礎(chǔ); 2、MindSpore開(kāi)源AI框架在個(gè)人PC環(huán)境上的部署安裝; 3、根據(jù)已有的MobileNetV2預(yù)訓(xùn)練模型+貓狗數(shù)據(jù)集進(jìn)行模型重訓(xùn); 4、初識(shí)MindSpore Lite工具鏈; 5、完成模型轉(zhuǎn)換并部署到手機(jī)端側(cè),實(shí)現(xiàn)貓狗識(shí)別。 聽(tīng)眾收益: 1、了來(lái)自:百科要的預(yù)訓(xùn)練模型。 課程大綱 第1章 推理模型的遷移與調(diào)優(yōu) 華為云 面向未來(lái)的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)字化成功的關(guān)鍵是以云原生的思維踐行云原生,全數(shù)字化、全云化、AI驅(qū)動(dòng),一切皆服務(wù)。 華為云將持續(xù)創(chuàng)新,攜手客戶(hù)、合作伙伴和開(kāi)發(fā)者,致力于讓云無(wú)處不在,讓智能無(wú)所不及,共建智能世界云底座。來(lái)自:百科
- tensorflow預(yù)訓(xùn)練模型 更多內(nèi)容
-
特點(diǎn):構(gòu)建專(zhuān)有的自然語(yǔ)言處理分類(lèi)模型,將大量的政務(wù)詢(xún)問(wèn)分發(fā)到對(duì)應(yīng)的部門(mén),顯著提高工作效率。 優(yōu)勢(shì):針對(duì)場(chǎng)景領(lǐng)域提供預(yù)訓(xùn)練模型,效果遠(yuǎn)好于通用自然語(yǔ)言處理模型。可根據(jù)使用過(guò)程中的反饋持續(xù)優(yōu)化模型。 商品識(shí)別 特點(diǎn):構(gòu)建商品視覺(jué)自動(dòng)識(shí)別的模型,可用于無(wú)人超市等場(chǎng)景。 優(yōu)勢(shì):用戶(hù)自定義模型可以實(shí)現(xiàn)99.來(lái)自:百科
時(shí)間:2020-12-01 15:29:16 本實(shí)驗(yàn)主要介紹基于AI1型服務(wù)器的黑白圖像上色項(xiàng)目,并部署在AI1型服務(wù)器上執(zhí)行的方法。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 本實(shí)驗(yàn)主要介紹基于AI1型 彈性云服務(wù)器 完成黑白圖像上色應(yīng)用開(kāi)發(fā),通過(guò)該實(shí)驗(yàn)了解將神經(jīng)網(wǎng)絡(luò)模型部署到昇騰310處理器運(yùn)行的一般過(guò)程和方法。 基本要求:來(lái)自:百科
度學(xué)習(xí)模型開(kāi)發(fā)、訓(xùn)練、評(píng)估和發(fā)布,支持多種計(jì)算資源進(jìn)行模型開(kāi)發(fā)與訓(xùn)練,以及超參調(diào)優(yōu)、模型可視化工具等功能。數(shù)據(jù)標(biāo)注平臺(tái)提供高效率的獨(dú)立的數(shù)據(jù)標(biāo)注功能,支持多類(lèi)型應(yīng)用場(chǎng)景、多人標(biāo)注、自動(dòng)標(biāo)注和批量標(biāo)注。模型工廠(chǎng)是模型的管理中心,支持模型入庫(kù)、模型上傳、格式轉(zhuǎn)換、版本控制、模型組合等來(lái)自:專(zhuān)題
特點(diǎn):基于不同部門(mén)的數(shù)據(jù),構(gòu)建專(zhuān)有的自然語(yǔ)言處理分類(lèi)模型,將大量的政務(wù)詢(xún)問(wèn)分發(fā)到對(duì)應(yīng)的部門(mén),顯著提高工作效率。 特點(diǎn):構(gòu)建商品視覺(jué)自動(dòng)識(shí)別的模型,可用于無(wú)人超市等場(chǎng)景。 特點(diǎn):對(duì)各種格式的票據(jù)圖片,可制作模板實(shí)現(xiàn)關(guān)鍵字段的自動(dòng)識(shí)別和提取。 優(yōu)勢(shì):針對(duì)場(chǎng)景領(lǐng)域提供預(yù)訓(xùn)練模型,效果遠(yuǎn)好于通用自然語(yǔ)言處理模型。可根據(jù)使用過(guò)來(lái)自:百科
的落地更簡(jiǎn)單。 盤(pán)古大模型基于“預(yù)訓(xùn)練模型+微調(diào)”的模式,能夠進(jìn)一步實(shí)現(xiàn)AI模型的通用性,泛化能力以及高精度,驅(qū)動(dòng)AI開(kāi)發(fā)向工業(yè)化轉(zhuǎn)變。其中預(yù)訓(xùn)練模型先基于海量數(shù)據(jù)進(jìn)行預(yù)訓(xùn)練,便可以直接適配多類(lèi)通用場(chǎng)景,用戶(hù)僅需在此基礎(chǔ)上,基于極小的樣本進(jìn)行數(shù)據(jù)微調(diào)和部署。開(kāi)發(fā)周期能夠縮短到幾天來(lái)自:百科
通過(guò)全域感知服務(wù),原來(lái)需要人工巡檢的發(fā)現(xiàn)的問(wèn)題,現(xiàn)在都可以用AI感知來(lái)替代,而且準(zhǔn)確性還能提升。城市治理中的事項(xiàng)類(lèi)別非常多,但很多事件的數(shù)據(jù)量很少,用常規(guī)的方式訓(xùn)練模型一個(gè)算法耗時(shí)長(zhǎng),準(zhǔn)確率低。我們依托于預(yù)訓(xùn)練大模型、小樣本學(xué)習(xí)等技術(shù),可以對(duì)這種數(shù)據(jù)量小的城市問(wèn)題進(jìn)行模型訓(xùn)練學(xué)習(xí)。同時(shí)通過(guò)圖像生成等數(shù)據(jù)增強(qiáng)來(lái)自:百科
基于歷史監(jiān)測(cè)數(shù)據(jù)、設(shè)備參數(shù)、當(dāng)前狀態(tài)等特征構(gòu)建故障預(yù)測(cè)模型,并對(duì)預(yù)測(cè)出的問(wèn)題給出初步的關(guān)鍵參數(shù)分析 算法預(yù)集成 專(zhuān)業(yè)預(yù)測(cè)性算法支持,預(yù)集成工業(yè)領(lǐng)域典型算法,如決策樹(shù),分類(lèi),聚類(lèi),回歸,異常檢測(cè)等算法。支持訓(xùn)練模型的靈活導(dǎo)出,可加載到規(guī)則引擎,實(shí)現(xiàn)實(shí)時(shí)告警 生產(chǎn)物料預(yù)估 基于歷史物料數(shù)據(jù),來(lái)自:百科
云知識(shí) 什么是產(chǎn)品模型 什么是產(chǎn)品模型 時(shí)間:2020-09-09 14:43:48 產(chǎn)品模型用于描述設(shè)備具備的能力和特性。開(kāi)發(fā)者通過(guò)定義產(chǎn)品模型,在 物聯(lián)網(wǎng)平臺(tái) 構(gòu)建一款設(shè)備的抽象模型,使平臺(tái)理解該款設(shè)備支持的服務(wù)、屬性、命令等信息,如顏色、開(kāi)關(guān)等。當(dāng)定義完一款產(chǎn)品模型后,在進(jìn)行注冊(cè)設(shè)來(lái)自:百科
環(huán)境準(zhǔn)備更快——與華為云IoT設(shè)備管理預(yù)集成,無(wú)需任何配置,即可打通IoT數(shù)據(jù)源;邊云協(xié)同的框架能力,只須聚焦分析業(yè)務(wù)邏輯開(kāi)發(fā),不感知邊緣資源管理;一鍵開(kāi)通數(shù)據(jù)分析相關(guān)能力,按需使用,無(wú)需繁瑣各自開(kāi)通;Serverless形態(tài),無(wú)需自行配置&維護(hù)服務(wù)器。 數(shù)據(jù)開(kāi)發(fā)更快——模型感知,資產(chǎn)/設(shè)備模型貫穿數(shù)據(jù)開(kāi)發(fā)來(lái)自:百科
ECC顯存,帶寬192GB/s GPU內(nèi)置硬件視頻編解碼引擎,能夠同時(shí)進(jìn)行35路高清視頻解碼與實(shí)時(shí)推理 常規(guī)支持軟件列表 Pi1實(shí)例主要用于GPU推理計(jì)算場(chǎng)景,例如圖片識(shí)別、 語(yǔ)音識(shí)別 等場(chǎng)景。 常用的軟件支持列表如下: Tensorflow、Caffe、PyTorch、MXNet等深度學(xué)習(xí)框架 推理加速型Pi2來(lái)自:百科
- 預(yù)訓(xùn)練模型發(fā)展歷史
- TensorFlow模型訓(xùn)練常見(jiàn)案例
- 預(yù)訓(xùn)練語(yǔ)音模型調(diào)研小結(jié)
- 【AI實(shí)戰(zhàn)】最強(qiáng)NLP預(yù)訓(xùn)練模型庫(kù)PyTorch-Transformers正式開(kāi)源!支持6個(gè)預(yù)訓(xùn)練框架,27個(gè)預(yù)訓(xùn)練模型
- tensorflow學(xué)習(xí):準(zhǔn)備訓(xùn)練數(shù)據(jù)和構(gòu)建訓(xùn)練模型
- 「超全」麻省理工音頻預(yù)訓(xùn)練模型
- NLP領(lǐng)域的Transformer預(yù)訓(xùn)練模型
- 《預(yù)訓(xùn)練語(yǔ)言模型:開(kāi)啟智能時(shí)代的大門(mén)》
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:遷移學(xué)習(xí)與預(yù)訓(xùn)練模型
- 「超全」麻省理工OpenCV預(yù)訓(xùn)練模型全集