- 檢測模型訓(xùn)練 內(nèi)容精選 換一換
-
大模型防火墻保障大模型應(yīng)用安全合規(guī) 大模型防火墻保障大模型應(yīng)用安全合規(guī) 生成式人工智能技術(shù)的迅猛發(fā)展推動了大模型在AI推理領(lǐng)域的規(guī)?;瘧?yīng)用,由此也暴露出新型安全隱患:推理過程中對用戶輸入的敏感信息缺乏有效過濾、攻擊者通過精心設(shè)計(jì)的提示詞注入誘導(dǎo)模型輸出違規(guī)指令、大模型可能因訓(xùn)練數(shù)據(jù)偏差生成歧視性來自:專題行作為一個記錄,列模型數(shù)據(jù)庫以一列為一個記錄。(這種模型,數(shù)據(jù)即索引,IO很快,主要是一些分布式數(shù)據(jù)庫) 鍵值對模型:存儲的數(shù)據(jù)是一個個“鍵值對” 文檔類模型:以一個個文檔來存儲數(shù)據(jù),有點(diǎn)類似“鍵值對”。 常見非關(guān)系模型數(shù)據(jù)庫: 列模型:Hbase 鍵值對模型:redis,MemcacheDB來自:百科
- 檢測模型訓(xùn)練 相關(guān)內(nèi)容
-
來自:百科而在標(biāo)準(zhǔn)物模型下,每個設(shè)備都對應(yīng)一個統(tǒng)一的標(biāo)準(zhǔn)物模型,它對外提供一致的接口,可以直接對應(yīng)應(yīng)用。 標(biāo)準(zhǔn)物模型可以任意組合產(chǎn)生新的模型,比如可以將攝像頭和燈組裝在一起,組成一個帶攝像頭的燈,組合后的復(fù)雜物仍然繼承了基礎(chǔ)物的模型,既能夠滿足復(fù)雜場景的需要,也能夠保持其標(biāo)準(zhǔn)模型與應(yīng)用進(jìn)行對接。來自:百科
- 檢測模型訓(xùn)練 更多內(nèi)容
-
AI應(yīng)用支持如下幾種場景的導(dǎo)入方式: 從訓(xùn)練中選擇:在ModelArts中創(chuàng)建訓(xùn)練作業(yè),并完成模型訓(xùn)練,在得到滿意的模型后,可以將訓(xùn)練后得到的模型創(chuàng)建為AI應(yīng)用,用于部署服務(wù)。獲取數(shù)據(jù)的問題。 從 OBS 中選擇:如果您使用常用框架在本地完成模型開發(fā)和訓(xùn)練,可以將本地的模型按照模型包規(guī)范上傳至OBS桶中來自:專題
工程、模型訓(xùn)練、模型評估和模型部署,從而提高開發(fā)效率。 該平臺能夠提供一站式的數(shù)據(jù)處理和開發(fā)服務(wù),包括數(shù)據(jù)集成、數(shù)據(jù)預(yù)處理、特征工程、模型訓(xùn)練、模型評估和模型部署,從而提高開發(fā)效率。 AI開發(fā)平臺 快速模型部署與服務(wù) 該平臺支持一鍵部署模型,能夠提高模型部署效率,實(shí)現(xiàn)模型到業(yè)務(wù)的無縫銜接,縮短模型開發(fā)周期。來自:專題
09:49:29 內(nèi)容審核 視頻檢測 視頻內(nèi)容審核為各類視頻平臺提供視頻中涉黃、涉恐、涉暴內(nèi)容自動審核,有效遏制風(fēng)險與釋放審核人力,提升效率。 產(chǎn)品優(yōu)勢: 1. 多模態(tài)審核:支持同時對視頻字幕、聲音與畫面多維度智能核查; 2. 準(zhǔn)確率高:采用深度卷積神經(jīng)網(wǎng)絡(luò)與海量訓(xùn)練數(shù)據(jù),模型識別準(zhǔn)確率高; 3來自:百科
還有機(jī)會獲得 華為云職業(yè)認(rèn)證 證書 訓(xùn)練營結(jié)營后可直接參與HCIP-Cloud Service DevOps Engineer職業(yè)認(rèn)證,通過后即頒發(fā)證書 三、訓(xùn)練營參與流程 報(bào)名學(xué)習(xí)課程——觀看開班直播——進(jìn)入學(xué)習(xí)交流群、每日打卡學(xué)習(xí)——參加訓(xùn)練營結(jié)營賽——論壇發(fā)帖互動 四、豐富的訓(xùn)練營獎品,等你拿!來自:百科
華為云計(jì)算 云知識 使用ModelArts開發(fā)自動駕駛模型 使用ModelArts開發(fā)自動駕駛模型 時間:2020-11-27 10:27:19 本視頻主要為您介紹使用ModelArts開發(fā)自動駕駛模型的操作教程指導(dǎo)。 場景描述: 數(shù)據(jù)湖 服務(wù)提供數(shù)據(jù)攝取、數(shù)據(jù)處理等功能。 Mod來自:百科
組、接入終端等硬件設(shè)備。 算法模型類 算法模型是一個一站式的開發(fā)平臺,能夠支撐開發(fā)者從數(shù)據(jù)到AI應(yīng)用的全流程開發(fā)過程。包含數(shù)據(jù)處理、模型訓(xùn)練、模型管理、部署等操作,ModelArts支持應(yīng)用到圖像分類、圖像檢測、視頻分析、 語音識別 、產(chǎn)品推薦、異常檢測等多種AI應(yīng)用場景。 應(yīng)用編排類來自:云商店
含數(shù)據(jù)處理、模型開發(fā)、模型訓(xùn)練、AI應(yīng)用管理和部署上線流程。 涉及計(jì)費(fèi)項(xiàng)包含: 開發(fā)環(huán)境(Notebook) 模型訓(xùn)練(訓(xùn)練作業(yè)) 部署上線(在線服務(wù)) 自動學(xué)習(xí) 面向AI基礎(chǔ)能力弱的開發(fā)者,根據(jù)標(biāo)注數(shù)據(jù)、自動設(shè)計(jì)、調(diào)優(yōu)、訓(xùn)練模型和部署服務(wù),根據(jù)開發(fā)者零編碼實(shí)現(xiàn)模型定制化開發(fā)。此來自:專題
本實(shí)驗(yàn)指導(dǎo)用戶在華為云ModelArts平臺對預(yù)置的模型進(jìn)行重訓(xùn)練,快速構(gòu)建 人臉識別 應(yīng)用。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 掌握MXNet AI引擎用法; 掌握基于MXNet構(gòu)建人臉識別神經(jīng)網(wǎng)絡(luò); 掌握華為云ModelArts SDK創(chuàng)建訓(xùn)練作業(yè)、模型部署和模型測試; 掌握ModelArts自研分布式訓(xùn)練框架MoXing。 實(shí)驗(yàn)摘要來自:百科
- 基于ModelArts實(shí)現(xiàn)行人檢測模型訓(xùn)練和多場景部署
- 使用Darknet框架訓(xùn)練目標(biāo)檢測模型
- 【華為云專家原創(chuàng)首發(fā)】?完成ModelArts實(shí)現(xiàn)人車檢測模型訓(xùn)練和部署實(shí)驗(yàn)
- 使用FasterRCNN預(yù)置算法訓(xùn)練人車檢測模型
- 疫情期間佩戴口罩檢測之訓(xùn)練檢測口罩模型算法實(shí)現(xiàn)口罩檢測步驟以及報(bào)錯解決
- mmdetection在自己的數(shù)據(jù)集上訓(xùn)練檢測模型
- mmdetection在自己的數(shù)據(jù)集上訓(xùn)練檢測模型
- 【CANN訓(xùn)練營筆記】基于目標(biāo)檢測模型擴(kuò)展推理運(yùn)用
- 基于ModelArts訓(xùn)練自動駕駛-車道線檢測模型【玩轉(zhuǎn)華為云】
- 大規(guī)模模型訓(xùn)練