- 機(jī)器學(xué)習(xí)的分類 內(nèi)容精選 換一換
-
來自:百科云知識 機(jī)器翻譯是什么 機(jī)器翻譯是什么 時(shí)間:2020-09-16 10:40:15 機(jī)器翻譯(Machine Translation)致力于為企業(yè)和個(gè)人提供不同語種間快速翻譯能力,通過API調(diào)用即可實(shí)現(xiàn)源語言文本到目標(biāo)語言文本的自動(dòng)翻譯 產(chǎn)品優(yōu)勢 算法領(lǐng)先 基于先進(jìn)的Trans來自:百科
- 機(jī)器學(xué)習(xí)的分類 相關(guān)內(nèi)容
-
【華為云】企業(yè)上云最佳實(shí)踐 華為云最佳實(shí)踐,是基于華為云眾多客戶上云的成功案例提煉而成的典型場景實(shí)踐指導(dǎo),可以幫助您輕松搭配多個(gè)云服務(wù)完成業(yè)務(wù)上云。最佳實(shí)踐覆蓋13個(gè)熱門分類,180+典型場景案例,每個(gè)最佳實(shí)踐包括使用場景、多個(gè)云服務(wù)部署架構(gòu)及操作指導(dǎo),手把手教您輕松上云。 立即體驗(yàn) [免費(fèi)來自:百科針對PDF、PPT、Word、Excel格式的文件提供了添加和提取水印的功能。 版權(quán)證明:嵌入數(shù)據(jù)擁有者的信息,保證資產(chǎn)唯一歸屬,實(shí)現(xiàn)版權(quán)保護(hù)。 追蹤溯源:嵌入數(shù)據(jù)使用者的信息,在發(fā)生數(shù)據(jù)泄露事件時(shí),追蹤其泄露源頭。 同時(shí), DSC 提供了數(shù)據(jù)動(dòng)態(tài)添加水印和提取數(shù)據(jù)水印的API接口供您使用,具體請參考 數(shù)據(jù)安全中心 API接口參考來自:專題
- 機(jī)器學(xué)習(xí)的分類 更多內(nèi)容
-
RPA優(yōu)勢 專業(yè)的華為數(shù)字機(jī)器人教學(xué)管理平臺,持續(xù)積累各個(gè)行業(yè)的教學(xué)案例與課程,適配高校各專業(yè)與RPA數(shù)字機(jī)器人技術(shù)的跨專業(yè)融合,進(jìn)行傳統(tǒng)專業(yè)數(shù)字化升級轉(zhuǎn)型。 專業(yè)的華為數(shù)字機(jī)器人教學(xué)管理平臺,持續(xù)積累各個(gè)行業(yè)的教學(xué)案例與課程,適配高校各專業(yè)與RPA數(shù)字機(jī)器人技術(shù)的跨專業(yè)融合,進(jìn)行傳統(tǒng)專業(yè)數(shù)字化升級轉(zhuǎn)型。來自:專題云知識 基于深度學(xué)習(xí)算法的 語音識別 基于深度學(xué)習(xí)算法的語音識別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開源語音數(shù)據(jù)集THCHS30進(jìn)行語音識別的實(shí)戰(zhàn)演練,讓使用者在了解語音識別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來自:百科翻譯中心:采用機(jī)器翻譯服務(wù),構(gòu)建滿足特定需求的機(jī)器翻譯系統(tǒng),高效準(zhǔn)確的翻譯郵件、論文、新聞等內(nèi)容 優(yōu)勢 翻譯質(zhì)量領(lǐng)先 引擎的翻譯效果,跟專業(yè)的譯員團(tuán)隊(duì)一起進(jìn)行打磨,機(jī)器翻譯效果質(zhì)量高 多領(lǐng)域支持 支持多個(gè)領(lǐng)域,如新聞、信息、通信等領(lǐng)域的機(jī)器翻譯 即時(shí)通訊:集成機(jī)器翻譯服務(wù)的即時(shí)通訊軟件,可以使不同語種用戶之間的交流更加便捷,提升用戶體驗(yàn)來自:百科手把手教你玩轉(zhuǎn) 人臉識別 ,初探深度學(xué)習(xí)。 課程簡介 本課程主要內(nèi)容包括:人臉識別原理、機(jī)器如何提取圖像的特征。 課程目標(biāo) 通過本課程學(xué)習(xí),了解機(jī)器學(xué)習(xí)的方法及快速掌握人臉識別應(yīng)用。 課程大綱 第1節(jié) 機(jī)器學(xué)習(xí)內(nèi)容回顧 第2節(jié) 機(jī)器是如何進(jìn)行圖像分類 第3節(jié) 圖像的特征提取 第4節(jié) 初探深度學(xué)習(xí) 第5節(jié) 人臉識別的原理及應(yīng)用場景來自:百科隱藏的結(jié)構(gòu)。常見的有聚類。 強(qiáng)化學(xué)習(xí):智能系統(tǒng)從環(huán)境到行為映射的學(xué)習(xí),以使獎(jiǎng)勵(lì)信號(強(qiáng)化信號)函數(shù)值最大。 回歸 回歸反映的是數(shù)據(jù)屬性值在時(shí)間上的特征,產(chǎn)生一個(gè)將數(shù)據(jù)項(xiàng)映射到一個(gè)實(shí)值預(yù)測變量的函數(shù),發(fā)現(xiàn)變量或?qū)傩蚤g的依賴關(guān)系,其主要研究問題包括數(shù)據(jù)序列的趨勢特征、數(shù)據(jù)序列的預(yù)測以來自:百科硬件加速來解決生物計(jì)算量的性能瓶頸。FPGA云服務(wù)器提供的強(qiáng)大的可編程的硬件計(jì)算能力可以很好滿足海量生物數(shù)據(jù)快速計(jì)算的需求。 金融風(fēng)險(xiǎn)分析:金融行業(yè)對計(jì)算能力、基于超低時(shí)延和高吞吐能力的及時(shí)響應(yīng)有很高的要求,比如基于 定價(jià) 樹模型的金融計(jì)算、高頻金融交易、基金/證券交易算法、金融風(fēng)險(xiǎn)來自:百科華為云計(jì)算 云知識 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺來自:百科
- 學(xué)習(xí)筆記|機(jī)器學(xué)習(xí)的分類
- 《scikit-learn機(jī)器學(xué)習(xí)常用算法原理及編程實(shí)戰(zhàn)》—1.3 機(jī)器學(xué)習(xí)的分類
- 機(jī)器學(xué)習(xí)分類
- 機(jī)器學(xué)習(xí)(五):機(jī)器學(xué)習(xí)算法分類
- 機(jī)器學(xué)習(xí)算法分類
- 《Spark機(jī)器學(xué)習(xí)進(jìn)階實(shí)戰(zhàn)》——1.3 機(jī)器學(xué)習(xí)分類
- 收藏 | 機(jī)器學(xué)習(xí)分類算法
- 機(jī)器學(xué)習(xí):多分類的logistic回歸
- 機(jī)器學(xué)習(xí)學(xué)習(xí)筆記(一)分類模型的評估
- 機(jī)器學(xué)習(xí)筆記(七) ---- 貝葉斯分類