- 視頻圖像分割 深度學(xué)習(xí) 內(nèi)容精選 換一換
-
來自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見的問題。 目標(biāo)學(xué)員來自:百科
- 視頻圖像分割 深度學(xué)習(xí) 相關(guān)內(nèi)容
-
大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢(shì)由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識(shí)別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來自:百科來自:百科
- 視頻圖像分割 深度學(xué)習(xí) 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) AI技術(shù)領(lǐng)域課程--深度學(xué)習(xí) AI技術(shù)領(lǐng)域課程--深度學(xué)習(xí) 時(shí)間:2020-12-15 15:23:12 深度學(xué)習(xí)是一種以人工神經(jīng)網(wǎng)絡(luò)為架構(gòu),對(duì)數(shù)據(jù)進(jìn)行表征學(xué)習(xí)的算法。目前,在圖像、語音識(shí)別、自然語言處理、強(qiáng)化學(xué)習(xí)等許多技術(shù)領(lǐng)域中,深度學(xué)習(xí)獲得了廣泛的應(yīng)用,并且在某些問來自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來自:百科通過本課程的學(xué)習(xí),使學(xué)員: 1、熟練使用華為云ModelArts一站式 AI開發(fā)平臺(tái) ; 2、系統(tǒng)、完整地了解多項(xiàng)AI領(lǐng)域的基礎(chǔ)知識(shí); 3、學(xué)習(xí)多項(xiàng)AI領(lǐng)域的經(jīng)典算法; 4、掌握一定的模型調(diào)優(yōu)能力,能自己動(dòng)手優(yōu)化模型; 課程大綱 第1章 圖像分類 第2章 物體檢測 第3章 圖像分割 第4章來自:百科ModelArts訓(xùn)練好后的模型如何獲?。?使用自動(dòng)學(xué)習(xí)產(chǎn)生的模型只能在ModelArts上部署上線,無法下載至本地使用。 使用自定義算法或者訂閱算法訓(xùn)練生成的模型,會(huì)存儲(chǔ)至用戶指定的 OBS 路徑中,供用戶下載。 是否支持圖像分割任務(wù)的訓(xùn)練? 支持。您可以使用以下三種方式實(shí)現(xiàn)圖像分割任務(wù)的訓(xùn)練。 您可以在AI來自:專題。數(shù)據(jù)反映了真實(shí)世界的狀況。數(shù)據(jù)集作為深度學(xué)習(xí)和機(jī)器學(xué)習(xí)的輸入,對(duì)AI開發(fā)有至關(guān)重要的意義。 ModelArts 數(shù)據(jù)管理 提供了一套高效便捷的管理和標(biāo)注數(shù)據(jù)集框架。不僅支持圖片、文本、語音、視頻等多種數(shù)據(jù)類型,涵蓋圖像分類、目標(biāo)檢測、音頻分割、文本分類等多個(gè)標(biāo)注場景,可適用于各種A來自:百科什么是Octopus:產(chǎn)品優(yōu)勢(shì) 概覽:產(chǎn)品優(yōu)勢(shì) 什么是Octopus:產(chǎn)品優(yōu)勢(shì) 視頻數(shù)據(jù)集使用教程:后續(xù)操作 產(chǎn)品介紹:服務(wù)內(nèi)容 訓(xùn)練服務(wù)簡介 圖像分割數(shù)據(jù)集使用教程:后續(xù)操作 數(shù)據(jù)資產(chǎn)簡介 圖像分割數(shù)據(jù)集使用教程:后續(xù)操作 使用流程 產(chǎn)品介紹:服務(wù)內(nèi)容 權(quán)限管理:理解Octopus的權(quán)限與委托來自:百科14:35:57 內(nèi)容審核 服務(wù)基于深度學(xué)習(xí)技術(shù)對(duì)圖像、視頻、文本內(nèi)容中的不合規(guī)信息進(jìn)行自動(dòng)檢測,方便用戶對(duì)不合規(guī)信息快速處理,幫助用戶提高審核效率。 產(chǎn)品優(yōu)勢(shì) 檢測準(zhǔn)確 基于深度學(xué)習(xí)技術(shù)和大量的樣本庫,幫助客戶快速準(zhǔn)確進(jìn)行違規(guī)內(nèi)容檢測,維護(hù)內(nèi)容安全。 功能豐富 提供圖文視頻內(nèi)容檢測,覆蓋涉黃、來自:百科
- 【圖像分割】走進(jìn)基于深度學(xué)習(xí)的圖像分割
- 深度學(xué)習(xí)中的圖像分割:方法和應(yīng)用
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:圖像語義分割與對(duì)象檢測
- 圖像視頻壓縮:深度學(xué)習(xí),有一套
- 深度學(xué)習(xí)實(shí)戰(zhàn)(六):使用 PyTorch 進(jìn)行 3D 醫(yī)學(xué)圖像分割
- 視頻物體分割
- 基于深度學(xué)習(xí)的圖像語義分割(Deep Learning-based Image Semantic Segmentation)
- 提升圖像分割精度:學(xué)習(xí)UNet++算法
- 深度學(xué)習(xí)|語義分割labelme的安裝和使用教程
- 《深度學(xué)習(xí)與圖像識(shí)別:原理與實(shí)踐》—1.2.9 圖像/視頻的生成及設(shè)計(jì)