- 深度學(xué)習(xí)有開(kāi)源代碼的文獻(xiàn) 內(nèi)容精選 換一換
-
征形成更抽象的高層代表屬性類(lèi)別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動(dòng)機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來(lái)解釋說(shuō)明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。 深度學(xué)習(xí)的典型模型:卷積神經(jīng)網(wǎng)絡(luò)模型、深度信任網(wǎng)絡(luò)模型、堆棧自編碼網(wǎng)絡(luò)模型。 深度學(xué)習(xí)的應(yīng)用:計(jì)算機(jī)視覺(jué)、 語(yǔ)音識(shí)別 、自然語(yǔ)言處理等其他領(lǐng)域。來(lái)自:百科來(lái)自:百科
- 深度學(xué)習(xí)有開(kāi)源代碼的文獻(xiàn) 相關(guān)內(nèi)容
-
的深度學(xué)習(xí)。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員了解如下知識(shí): 1、高效的結(jié)構(gòu)設(shè)計(jì)。 2、用NAS搜索輕量級(jí)網(wǎng)絡(luò)。 3、數(shù)據(jù)高效的模型壓縮。 4、1bit量化。 課程大綱 第1章 能耗高效的深度學(xué)習(xí)的背景 第2章 高效的神經(jīng)元和結(jié)構(gòu)設(shè)計(jì) 第3章 基于NAS的輕量級(jí)神經(jīng)網(wǎng)絡(luò) 第4章來(lái)自:百科云知識(shí) 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科
- 深度學(xué)習(xí)有開(kāi)源代碼的文獻(xiàn) 更多內(nèi)容
-
更好的訓(xùn)練效果。 本次訓(xùn)練所使用的經(jīng)過(guò)數(shù)據(jù)增強(qiáng)的圖片 基于深度學(xué)習(xí)的識(shí)別方法 與傳統(tǒng)的機(jī)器學(xué)習(xí)使用簡(jiǎn)單模型執(zhí)行分類(lèi)等任務(wù)不同,此次訓(xùn)練我們使用深度神經(jīng)網(wǎng)絡(luò)作為訓(xùn)練模型,即深度學(xué)習(xí)。深度學(xué)習(xí)通過(guò)人工神經(jīng)網(wǎng)絡(luò)來(lái)提取特征,不同層的輸出常被視為神經(jīng)網(wǎng)絡(luò)提取出的不同尺度的特征,上一層的輸出來(lái)自:百科
實(shí)現(xiàn)售賣(mài)機(jī)的智能化運(yùn)營(yíng),是一個(gè)貫穿數(shù)據(jù)開(kāi)發(fā)、數(shù)據(jù)采集、數(shù)據(jù)挖掘應(yīng)用的完整項(xiàng)目。 目標(biāo)學(xué)員 希望了解AI與IoT技術(shù)結(jié)合場(chǎng)景實(shí)現(xiàn)方法并掌握其開(kāi)發(fā)能力的人員。 課程目標(biāo) 通過(guò)學(xué)習(xí)本課程,學(xué)員可以對(duì)設(shè)備接入IoT平臺(tái)上報(bào)數(shù)據(jù),基于AI對(duì)設(shè)備上報(bào)數(shù)據(jù)進(jìn)行分析預(yù)測(cè)的實(shí)際應(yīng)用場(chǎng)景有一個(gè)了解。來(lái)自:百科
、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過(guò)程。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來(lái)自:百科
通過(guò)HTTPS/SSH訪問(wèn)代碼倉(cāng)庫(kù),將使用SSH Key或者倉(cāng)庫(kù)用戶名及密碼進(jìn)行訪問(wèn)鑒權(quán)。 基于角色與權(quán)限的細(xì)粒度授權(quán):不同的角色,在不同的服務(wù)中,根據(jù)不同的資源,可以有不同的操作權(quán)限。還可以做自定義的權(quán)限設(shè)置。 不可抵賴性:DevCloud基于公有云 IAM Token機(jī)制,所有來(lái)自:百科
具有相應(yīng)語(yǔ)言的基礎(chǔ)編程能力,而不是說(shuō)希望通過(guò)編程規(guī)范來(lái)學(xué)習(xí)某個(gè)具體的語(yǔ)言。 規(guī)則集 規(guī)則集則是一組用于做代碼檢查的規(guī)則組成的集合。 一般根據(jù)不同的檢查目標(biāo)和需求,規(guī)則集也有相應(yīng)的分類(lèi),比如對(duì)安全類(lèi)、安卓應(yīng)用、編程風(fēng)格這些類(lèi)別進(jìn)行檢查的時(shí)候,規(guī)則集內(nèi)的規(guī)則也會(huì)有不同的選擇。 規(guī)則集來(lái)自:百科
華為云計(jì)算 云知識(shí) ModelArts有什么優(yōu)勢(shì) ModelArts有什么優(yōu)勢(shì) 時(shí)間:2020-09-09 15:43:07 ModelArts是面向開(kāi)發(fā)者的一站式 AI開(kāi)發(fā)平臺(tái) ,為機(jī)器學(xué)習(xí)與深度學(xué)習(xí)提供海量數(shù)據(jù)預(yù)處理及半自動(dòng)化標(biāo)注、大規(guī)模分布式Training、自動(dòng)化模型生成,及來(lái)自:百科
華為云計(jì)算 云知識(shí) 云原生與開(kāi)源社區(qū)的關(guān)系 云原生與開(kāi)源社區(qū)的關(guān)系 時(shí)間:2021-06-30 18:16:57 在奉行事實(shí)標(biāo)準(zhǔn)的IT界,云技術(shù)發(fā)展多年的今天,開(kāi)源社區(qū)已然是云原生技術(shù)的關(guān)鍵推動(dòng)者,同時(shí)也是相關(guān)技術(shù)標(biāo)準(zhǔn)的制定者。 我們知道云原生飛速發(fā)展的背景,解決應(yīng)用的標(biāo)準(zhǔn)化問(wèn)題:下層基礎(chǔ)來(lái)自:百科
成相關(guān)的API,可用于新聞?wù)伞?span style='color:#C7000B'>文獻(xiàn)摘要生成、搜索結(jié)果片段生成、商品評(píng)論摘要等場(chǎng)景中。 語(yǔ)音合成 有哪些優(yōu)勢(shì)? 功能全面:提供多種常用自然語(yǔ)言類(lèi)的算法模型及解決方案,可覆蓋不同行業(yè)的各類(lèi)需求。 高效精準(zhǔn):可快速分析大數(shù)據(jù)量的文本,深度理解文本語(yǔ)義,更加精準(zhǔn)的挖掘出文本中的關(guān)鍵信息。來(lái)自:專(zhuān)題
- 12本深度學(xué)習(xí)書(shū)籍推薦:有入門(mén),有深度
- 【深度學(xué)習(xí)】嘿馬深度學(xué)習(xí)筆記第1篇:深度學(xué)習(xí),1.1 深度學(xué)習(xí)與機(jī)器學(xué)習(xí)的區(qū)別【附代碼文檔】
- MindSpore!這款剛剛開(kāi)源的深度學(xué)習(xí)框架我愛(ài)了!
- 文獻(xiàn)綜述的資料查找有哪些方法
- 深度學(xué)習(xí)的數(shù)學(xué) —— 有名有姓的矩陣
- 【深度學(xué)習(xí)】嘿馬深度學(xué)習(xí)系統(tǒng)性知識(shí)教程第5篇:深度學(xué)習(xí)進(jìn)階,2.3 深度學(xué)習(xí)正則化【附代碼文檔】
- 《深入理解AutoML和AutoDL:構(gòu)建自動(dòng)化機(jī)器學(xué)習(xí)與深度學(xué)習(xí)平臺(tái)》 —2.4 參考文獻(xiàn)
- 【深度學(xué)習(xí)】嘿馬深度學(xué)習(xí)系統(tǒng)性知識(shí)教程第1篇:在職高新課-深度學(xué)習(xí),1.1 深度學(xué)習(xí)介紹【附代碼文檔】
- 《深入理解AutoML和AutoDL:構(gòu)建自動(dòng)化機(jī)器學(xué)習(xí)與深度學(xué)習(xí)平臺(tái)》 —1.6 參考文獻(xiàn)
- 《深入理解AutoML和AutoDL:構(gòu)建自動(dòng)化機(jī)器學(xué)習(xí)與深度學(xué)習(xí)平臺(tái)》 —3.4 參考文獻(xiàn)