- 深度學(xué)習(xí)隱含層參數(shù) 內(nèi)容精選 換一換
-
來自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見的問題。 目標(biāo)學(xué)員來自:百科
- 深度學(xué)習(xí)隱含層參數(shù) 相關(guān)內(nèi)容
-
大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢(shì)由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識(shí)別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場(chǎng)景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來自:百科et-5。 LeNet-5由輸入層、卷積層、池化層和全連接層組成。輸入層用于輸入數(shù)據(jù);卷積層通過卷積運(yùn)算對(duì)輸入進(jìn)行局部特征提取;池化層通過下采樣的方式降低特征圖的分辨率,從而降低輸出對(duì)位置和形變的敏感度,同時(shí)還可降低網(wǎng)絡(luò)中的參數(shù)和計(jì)算量;全連接層將局部特征通過權(quán)值矩陣組裝成完整的來自:百科
- 深度學(xué)習(xí)隱含層參數(shù) 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 基于深度學(xué)習(xí)算法的 語音識(shí)別 基于深度學(xué)習(xí)算法的語音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開源語音數(shù)據(jù)集THCHS30進(jìn)行語音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來自:百科
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來自:百科
華為云計(jì)算 云知識(shí) GaussDB 的存儲(chǔ)抽象層(SAL) GaussDB的存儲(chǔ)抽象層(SAL) 時(shí)間:2021-06-16 16:52:38 數(shù)據(jù)庫 存儲(chǔ)抽象層 (SAL)是邏輯層,將數(shù)據(jù)存儲(chǔ)和 SQL 前端、事務(wù)、查詢執(zhí)行等進(jìn)行隔離; 由在 SQL 節(jié)點(diǎn)上執(zhí)行的公共日志模塊和存儲(chǔ)節(jié)點(diǎn)上執(zhí)行的來自:百科
,還實(shí)現(xiàn)了內(nèi)存中數(shù)據(jù)的運(yùn)算態(tài)加密,從而實(shí)現(xiàn)數(shù)據(jù)全生命周期內(nèi)的安全保護(hù)。 AI-Native自治,管理智能高效 參數(shù)自調(diào)優(yōu) 當(dāng)前已經(jīng)覆蓋了500+重點(diǎn)參數(shù),通過深度強(qiáng)化學(xué)習(xí)與全局調(diào)優(yōu)算法,結(jié)合不同業(yè)務(wù)負(fù)載模型進(jìn)行針對(duì)性調(diào)優(yōu),相比DBA人工根據(jù)經(jīng)驗(yàn)調(diào)優(yōu),性能提升30%的同時(shí),耗費(fèi)時(shí)間從天下降到分鐘級(jí)。來自:專題
云知識(shí) DRS使用中的參數(shù)遷移 DRS使用中的參數(shù)遷移 時(shí)間:2021-05-31 17:03:37 數(shù)據(jù)庫 DRS使用中,參數(shù)遷移包括常規(guī)參數(shù)和性能參數(shù)。 常規(guī)參數(shù)大部分參數(shù)不遷移,并不會(huì)導(dǎo)致遷移失敗,但參數(shù)往往直接影響到業(yè)務(wù)的運(yùn)行和性能表現(xiàn)DRS支持參數(shù)遷移,讓 數(shù)據(jù)庫遷移 后,業(yè)務(wù)和應(yīng)用更平滑,更無憂。來自:百科
輕松地創(chuàng)建一個(gè)新數(shù)據(jù)庫參數(shù)模板,修改所需參數(shù)并應(yīng)用到數(shù)據(jù)庫實(shí)例,用以使用新數(shù)據(jù)庫參數(shù)模板。 文檔數(shù)據(jù)庫服務(wù) DDS參數(shù)模板與實(shí)例建立關(guān)聯(lián)后,如果修改了參數(shù)模板中的參數(shù),那么使用該參數(shù)模板的所有實(shí)例,都將獲得該參數(shù)模板中對(duì)應(yīng)參數(shù)的更新。 文檔數(shù)據(jù)庫 服務(wù) DDS 參數(shù)模板使用場(chǎng)景 文檔數(shù)據(jù)庫服務(wù)DDS參數(shù)模板使用場(chǎng)景來自:專題
華為云計(jì)算 云知識(shí) 自助購買物理專線配置參數(shù)有哪些 自助購買物理專線配置參數(shù)有哪些 時(shí)間:2021-07-02 19:48:23 云專線 云數(shù)據(jù)庫 自助購買物理專線配置參數(shù)有計(jì)費(fèi)模式、區(qū)域、接入位置、名稱、端口類型、帶寬、運(yùn)營商、機(jī)房地址、描述、購買時(shí)長等幾個(gè)內(nèi)容。 文中課程 更來自:百科
- 深度學(xué)習(xí)方法解析地震數(shù)據(jù)中的隱含結(jié)構(gòu)
- 深度學(xué)習(xí)基礎(chǔ)-網(wǎng)絡(luò)層參數(shù)初始化詳解
- 深度學(xué)習(xí)煉丹-超參數(shù)調(diào)整
- 深度學(xué)習(xí)之快速理解卷積層
- 深度學(xué)習(xí)筆記(三):BatchNorm(BN)層
- 《Keras深度學(xué)習(xí)實(shí)戰(zhàn)》—2.8 共享層模型
- 深度學(xué)習(xí)算法中的參數(shù)共享(Parameter Sharing)
- 9.Makefile隱含規(guī)則
- 深度學(xué)習(xí)模型的參數(shù)和顯存占用計(jì)算
- 【C++深度剖析學(xué)習(xí)總結(jié)】 7 函數(shù)參數(shù)的擴(kuò)展