- 深度學(xué)習(xí)新模型 內(nèi)容精選 換一換
-
全域Serverless+AI,華為云加速大模型應(yīng)用開(kāi)發(fā) 全域Serverless+AI,華為云加速大模型應(yīng)用開(kāi)發(fā) 時(shí)間:2024-08-28 15:23:03 日前,華為全聯(lián)接大會(huì)2023在上海召開(kāi)。華為云CTO張宇昕在大會(huì)上發(fā)布了基于Serverless技術(shù)的大模型應(yīng)用開(kāi)發(fā)框架,框架以面向AI來(lái)自:百科10:09:17 語(yǔ)音交互 包括以下子服務(wù): 定制 語(yǔ)音識(shí)別 (ASR Customization,ASRC):基于深度學(xué)習(xí)技術(shù),提供針對(duì)特定領(lǐng)域(如快遞行業(yè))優(yōu)化的語(yǔ)音識(shí)別能力,并可自定義語(yǔ)言模型。 定制語(yǔ)音識(shí)別包含 一句話識(shí)別 、錄音文件識(shí)別功能。支持熱詞定制。 實(shí)時(shí)語(yǔ)音轉(zhuǎn)寫(xiě)(Real-time來(lái)自:百科
- 深度學(xué)習(xí)新模型 相關(guān)內(nèi)容
-
AI開(kāi)發(fā)平臺(tái) ModelArts ModelArts是面向開(kāi)發(fā)者的一站式AI開(kāi)發(fā)平臺(tái),為機(jī)器學(xué)習(xí)與深度學(xué)習(xí)提供海量數(shù)據(jù)預(yù)處理及半自動(dòng)化標(biāo)注、大規(guī)模分布式Training、自動(dòng)化模型生成,及端-邊-云模型按需部署能力,幫助用戶快速創(chuàng)建和部署模型,管理全周期AI工作流。 產(chǎn)品詳情立即注冊(cè)一元域名華為 云桌面 [免費(fèi)來(lái)自:云商店華為云計(jì)算 云知識(shí) 關(guān)系型數(shù)據(jù)庫(kù)和非關(guān)系模型數(shù)據(jù)庫(kù)的區(qū)別 關(guān)系型數(shù)據(jù)庫(kù)和非關(guān)系模型數(shù)據(jù)庫(kù)的區(qū)別 時(shí)間:2020-07-28 14:11:44 數(shù)據(jù)庫(kù) 關(guān)系型數(shù)據(jù)庫(kù)與非關(guān)系型數(shù)據(jù)庫(kù)的區(qū)別 1.不同的數(shù)據(jù)存儲(chǔ)方法。 關(guān)系數(shù)據(jù)庫(kù)和非關(guān)系數(shù)據(jù)庫(kù)之間的主要區(qū)別在于數(shù)據(jù)的存儲(chǔ)方式。關(guān)系數(shù)據(jù)自來(lái)自:百科
- 深度學(xué)習(xí)新模型 更多內(nèi)容
-
全域Serverless+AI,華為云加速大模型應(yīng)用開(kāi)發(fā) 全域Serverless+AI,華為云加速大模型應(yīng)用開(kāi)發(fā) 時(shí)間:2024-12-26 17:56:36 云日志 服務(wù) 應(yīng)用運(yùn)維管理 函數(shù)工作流 華為云首席產(chǎn)品官方國(guó)偉介紹,在AI時(shí)代背景下,軟件開(kāi)發(fā)的方式由以代碼為中心,走向以模型為中心,如何將AI大模型能力充分利用起來(lái),是當(dāng)下云廠商積極探索的事情。來(lái)自:百科
LiteOS輕量級(jí)AI推理框架LiteAI,從模型轉(zhuǎn)換、優(yōu)化及執(zhí)行三個(gè)方面向開(kāi)發(fā)者呈現(xiàn)如何在IoT設(shè)備上實(shí)現(xiàn)AI模型的推理全流程,并結(jié)合智能設(shè)備AI開(kāi)發(fā)的案例,展示AI部署全過(guò)程。 l 針對(duì)IoT設(shè)備內(nèi)存空間小的問(wèn)題,LiteAI應(yīng)用了模型量化技術(shù),將模型參數(shù)從32比特浮點(diǎn)量化到8比特定點(diǎn),實(shí)現(xiàn)75%模型壓縮;實(shí)現(xiàn)來(lái)自:百科
絡(luò)的優(yōu)化開(kāi)辟一條獨(dú)特的路徑。 張量加速引擎TBE的三種應(yīng)用場(chǎng)景 1、一般情況下,通過(guò)深度學(xué)習(xí)框架中的標(biāo)準(zhǔn)算子實(shí)現(xiàn)的神經(jīng)網(wǎng)絡(luò)模型已經(jīng)通過(guò)GPU或者其它類型神經(jīng)網(wǎng)絡(luò)芯片做過(guò)訓(xùn)練。如果將這個(gè)神經(jīng)網(wǎng)絡(luò)模型繼續(xù)運(yùn)行在昇騰AI處理器上時(shí),希望盡量在不改變?cè)即a的前提下,在昇騰AI處理器上能來(lái)自:百科
據(jù),減少火災(zāi)隱患。 方案優(yōu)勢(shì) 1. 行業(yè)應(yīng)用上算法開(kāi)發(fā)經(jīng)驗(yàn)積累豐富:算法會(huì)自動(dòng)利用相關(guān)先驗(yàn)知識(shí)對(duì)深度學(xué)習(xí)模型的檢測(cè)結(jié)果進(jìn)行判別,排除誤檢測(cè),準(zhǔn)確可靠。利用數(shù)字圖像處理技術(shù)和先進(jìn)的深度學(xué)習(xí)技術(shù),可對(duì)廚房進(jìn)行全天候智能監(jiān)測(cè)。 2. 針對(duì)客戶需求進(jìn)行定制化功能開(kāi)發(fā):針對(duì)不同行業(yè)應(yīng)用需求來(lái)自:云商店
特點(diǎn):構(gòu)建專有的自然語(yǔ)言處理分類模型,將大量的政務(wù)詢問(wèn)分發(fā)到對(duì)應(yīng)的部門,顯著提高工作效率。 優(yōu)勢(shì):針對(duì)場(chǎng)景領(lǐng)域提供預(yù)訓(xùn)練模型,效果遠(yuǎn)好于通用自然語(yǔ)言處理模型??筛鶕?jù)使用過(guò)程中的反饋持續(xù)優(yōu)化模型。 商品識(shí)別 特點(diǎn):構(gòu)建商品視覺(jué)自動(dòng)識(shí)別的模型,可用于無(wú)人超市等場(chǎng)景。 優(yōu)勢(shì):用戶自定義模型可以實(shí)現(xiàn)99.來(lái)自:百科
15:59:32 內(nèi)容簡(jiǎn)介: 將介紹人工智能基本知識(shí)體系,機(jī)器學(xué)習(xí)、深度學(xué)習(xí)、強(qiáng)化學(xué)習(xí)基礎(chǔ)與實(shí)踐。時(shí)空預(yù)測(cè)問(wèn)題的AutoML求解— Hands on Vega:基于AIOPS平臺(tái),利用AutoDL技術(shù)開(kāi)發(fā)硬盤異常檢測(cè)模型。以及中軟宅客學(xué)院在線平臺(tái)網(wǎng)絡(luò)人工智能課程介紹及7天實(shí)戰(zhàn)、人才測(cè)評(píng)。來(lái)自:百科
基于歷史物料數(shù)據(jù),對(duì)生產(chǎn)所需物料進(jìn)行準(zhǔn)確分析預(yù)估,降低倉(cāng)儲(chǔ)周期,提升效率 優(yōu)勢(shì) 深度算法優(yōu)化 基于業(yè)界時(shí)間序列算法模型,并結(jié)合華為供應(yīng)鏈深度優(yōu)化 一鍵式發(fā)布 機(jī)器學(xué)習(xí)、推理平臺(tái)預(yù)集成,算法模型可以一鍵式發(fā)布應(yīng)用,降低二次開(kāi)發(fā)工作 華為云 面向未來(lái)的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路來(lái)自:百科
- 破除“迷信”!周志華:深度學(xué)習(xí)新模型“深度森林”,有望打破神經(jīng)網(wǎng)絡(luò)壟斷
- Sora模型的技術(shù)原理與應(yīng)用:開(kāi)創(chuàng)多模態(tài)學(xué)習(xí)新局面!
- 《數(shù)據(jù)流驅(qū)動(dòng):C++構(gòu)建 AI 模型持續(xù)學(xué)習(xí)新范式》
- 《深度Q網(wǎng)絡(luò)遇上注意力機(jī)制:解鎖強(qiáng)化學(xué)習(xí)新高度》
- 深度學(xué)習(xí)模型編譯技術(shù)
- 深度學(xué)習(xí)新篇章:openEuler撐起AI地基,你真的了解它嗎?【華為根技術(shù)】
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:Transformer模型
- 利用深度學(xué)習(xí)建立流失模型
- 學(xué)習(xí)新知識(shí)時(shí)的幾個(gè)技巧
- 深度學(xué)習(xí)模型訓(xùn)練流程思考