- 深度學(xué)習(xí)的研究現(xiàn)狀與發(fā)展 內(nèi)容精選 換一換
-
征形成更抽象的高層代表屬性類別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動(dòng)機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來(lái)解釋說(shuō)明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。 深度學(xué)習(xí)的典型模型:卷積神經(jīng)網(wǎng)絡(luò)模型、深度信任網(wǎng)絡(luò)模型、堆棧自編碼網(wǎng)絡(luò)模型。 深度學(xué)習(xí)的應(yīng)用:計(jì)算機(jī)視覺(jué)、 語(yǔ)音識(shí)別 、自然語(yǔ)言處理等其他領(lǐng)域。來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣(mài)機(jī)這一真實(shí)場(chǎng)景開(kāi)發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開(kāi)發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科
- 深度學(xué)習(xí)的研究現(xiàn)狀與發(fā)展 相關(guān)內(nèi)容
-
需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:描述神經(jīng)網(wǎng)絡(luò)的定義與發(fā)展;熟悉深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)的重要“部件”;熟悉神經(jīng)網(wǎng)絡(luò)的訓(xùn)練與優(yōu)化;描述深度學(xué)習(xí)中常見(jiàn)的問(wèn)題。 課程大綱 1. 深度學(xué)習(xí)簡(jiǎn)介 2. 訓(xùn)練法則來(lái)自:百科云知識(shí) 云原生在中國(guó)的發(fā)展現(xiàn)狀 云原生在中國(guó)的發(fā)展現(xiàn)狀 時(shí)間:2021-06-30 17:57:04 在中國(guó),云原生的生態(tài)也飛速發(fā)展,CNCF的會(huì)員數(shù)量也從2015年的1家初創(chuàng)&白金會(huì)員發(fā)展到今天60家成員單位。 全球1/4認(rèn)證的K8s服務(wù)提供商來(lái)自中國(guó);1/3的K8s培訓(xùn)發(fā)生在中來(lái)自:百科
- 深度學(xué)習(xí)的研究現(xiàn)狀與發(fā)展 更多內(nèi)容
-
管理數(shù)據(jù)量急劇增大; 生態(tài)化; 華為云 面向未來(lái)的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)字化成功的關(guān)鍵是以云原生的思維踐行云原生,全數(shù)字化、全云化、AI驅(qū)動(dòng),一切皆服務(wù)。 華為云將持續(xù)創(chuàng)新,攜手客戶、合作伙伴和開(kāi)發(fā)者,致力于讓云無(wú)處不在,讓智能無(wú)所不及,共建智能世界云底座。 華為云官網(wǎng)立即注冊(cè)一元域名華為 云桌面來(lái)自:百科云知識(shí) 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科更好的訓(xùn)練效果。 本次訓(xùn)練所使用的經(jīng)過(guò)數(shù)據(jù)增強(qiáng)的圖片 基于深度學(xué)習(xí)的識(shí)別方法 與傳統(tǒng)的機(jī)器學(xué)習(xí)使用簡(jiǎn)單模型執(zhí)行分類等任務(wù)不同,此次訓(xùn)練我們使用深度神經(jīng)網(wǎng)絡(luò)作為訓(xùn)練模型,即深度學(xué)習(xí)。深度學(xué)習(xí)通過(guò)人工神經(jīng)網(wǎng)絡(luò)來(lái)提取特征,不同層的輸出常被視為神經(jīng)網(wǎng)絡(luò)提取出的不同尺度的特征,上一層的輸出來(lái)自:百科隨著業(yè)務(wù)的不斷增加,實(shí)例的CPU和內(nèi)存資源可成會(huì)為實(shí)例性能的瓶頸,無(wú)法滿足業(yè)務(wù)要求時(shí), GaussDB 提供了規(guī)格變更功能來(lái)提升實(shí)例的CPU和內(nèi)存。 隨著業(yè)務(wù)的不斷增加,實(shí)例的CPU和內(nèi)存資源可成會(huì)為實(shí)例性能的瓶頸,無(wú)法滿足業(yè)務(wù)要求時(shí),GaussDB提供了規(guī)格變更功能來(lái)提升實(shí)例的CPU和內(nèi)存。來(lái)自:專題課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員了解: 1、神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索的理論基礎(chǔ)和廣泛應(yīng)用。 2、NAS的發(fā)展現(xiàn)狀。 課程大綱 第1章 引言 第2章 神經(jīng)網(wǎng)絡(luò)架構(gòu)搜索: what and why 第3章 神經(jīng)網(wǎng)絡(luò)架構(gòu)搜索的廣義框架 第4章 基于進(jìn)化的方法 第5章 基于強(qiáng)化學(xué)習(xí)的方法 第6章 one-shot架構(gòu)搜索來(lái)自:百科
- 深度學(xué)習(xí)的發(fā)展歷程
- 深度學(xué)習(xí) - 深度學(xué)習(xí) (人工神經(jīng)網(wǎng)絡(luò)的研究的概念)
- 單一構(gòu)建系統(tǒng)發(fā)布與部署的業(yè)界現(xiàn)狀研究
- 單一構(gòu)建系統(tǒng)發(fā)布與部署的業(yè)界現(xiàn)狀研究
- 單一構(gòu)建系統(tǒng)發(fā)布與部署的業(yè)界現(xiàn)狀研究
- 大數(shù)據(jù)發(fā)展現(xiàn)狀
- 《深入理解AutoML和AutoDL:構(gòu)建自動(dòng)化機(jī)器學(xué)習(xí)與深度學(xué)習(xí)平臺(tái)》 —1.4 深度學(xué)習(xí)的發(fā)展
- 《軟件架構(gòu)理論與實(shí)踐》 —1.4 軟件架構(gòu)研究和應(yīng)用現(xiàn)狀
- AI人工智能發(fā)展現(xiàn)狀
- 中國(guó)云計(jì)算產(chǎn)業(yè)發(fā)展現(xiàn)狀