- 深度學(xué)習(xí)的新成果 內(nèi)容精選 換一換
-
征形成更抽象的高層代表屬性類別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動(dòng)機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來解釋說明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。 深度學(xué)習(xí)的典型模型:卷積神經(jīng)網(wǎng)絡(luò)模型、深度信任網(wǎng)絡(luò)模型、堆棧自編碼網(wǎng)絡(luò)模型。 深度學(xué)習(xí)的應(yīng)用:計(jì)算機(jī)視覺、 語音識(shí)別 、自然語言處理等其他領(lǐng)域。來自:百科來自:百科
- 深度學(xué)習(xí)的新成果 相關(guān)內(nèi)容
-
的深度學(xué)習(xí)。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員了解如下知識(shí): 1、高效的結(jié)構(gòu)設(shè)計(jì)。 2、用NAS搜索輕量級(jí)網(wǎng)絡(luò)。 3、數(shù)據(jù)高效的模型壓縮。 4、1bit量化。 課程大綱 第1章 能耗高效的深度學(xué)習(xí)的背景 第2章 高效的神經(jīng)元和結(jié)構(gòu)設(shè)計(jì) 第3章 基于NAS的輕量級(jí)神經(jīng)網(wǎng)絡(luò) 第4章來自:百科云知識(shí) 基于深度學(xué)習(xí)算法的語音識(shí)別 基于深度學(xué)習(xí)算法的語音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開源語音數(shù)據(jù)集THCHS30進(jìn)行語音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來自:百科
- 深度學(xué)習(xí)的新成果 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來自:百科
政務(wù)應(yīng)用的開發(fā)規(guī)范標(biāo)準(zhǔn)化。為了避免供應(yīng)商交付后沒有源代碼導(dǎo)致應(yīng)用維護(hù)斷檔,華為云CodeArts代碼倉和中心倉可以維護(hù)政企應(yīng)用源代碼;三態(tài)一致是利用華為云CodeArts的一站式,跟蹤管控應(yīng)用的設(shè)計(jì)態(tài)、開發(fā)態(tài)、運(yùn)行態(tài)的三態(tài)目標(biāo)一致性,避免供應(yīng)商只交付一個(gè)單體應(yīng)用時(shí),應(yīng)用的設(shè)計(jì)和開發(fā)對應(yīng)關(guān)系被弱化、不準(zhǔn)確的情況發(fā)生。來自:百科
華為云計(jì)算 云知識(shí) 數(shù)據(jù)管理 技術(shù)的新挑戰(zhàn) 數(shù)據(jù)管理技術(shù)的新挑戰(zhàn) 時(shí)間:2021-05-21 11:30:13 數(shù)據(jù)庫 數(shù)據(jù)系統(tǒng) 數(shù)據(jù)管理 數(shù)據(jù)管理技術(shù)的面臨的新挑戰(zhàn)主要來自高度可擴(kuò)展性和可伸縮性、數(shù)據(jù)類型多樣和異構(gòu)處理能力、數(shù)據(jù)處理時(shí)效性要求以及大數(shù)據(jù)來臨這四個(gè)方面。 1、高度可擴(kuò)展性和可伸縮性來自:百科
- 深度學(xué)習(xí)的學(xué)習(xí)路線
- 【深度學(xué)習(xí)】嘿馬深度學(xué)習(xí)筆記第1篇:深度學(xué)習(xí),1.1 深度學(xué)習(xí)與機(jī)器學(xué)習(xí)的區(qū)別【附代碼文檔】
- 動(dòng)手學(xué)深度學(xué)習(xí):優(yōu)化與深度學(xué)習(xí)的關(guān)系
- 《MXNet深度學(xué)習(xí)實(shí)戰(zhàn)》—1.1.3 深度學(xué)習(xí)
- 破除“迷信”!周志華:深度學(xué)習(xí)新模型“深度森林”,有望打破神經(jīng)網(wǎng)絡(luò)壟斷
- 深度學(xué)習(xí) - 深度學(xué)習(xí) (人工神經(jīng)網(wǎng)絡(luò)的研究的概念)
- 深度學(xué)習(xí)算法中的集成學(xué)習(xí)(Ensemble Learning)與深度學(xué)習(xí)的結(jié)合
- 深度學(xué)習(xí)的進(jìn)展
- 深度學(xué)習(xí)在日志分析中的應(yīng)用:智能運(yùn)維的新前沿
- 【C++深度剖析學(xué)習(xí)總結(jié)】 10 C++ 中的新成員new