- 深度學(xué)習(xí) 訓(xùn)練時(shí)間 內(nèi)容精選 換一換
-
Turbo高性能,加速訓(xùn)練過(guò)程 1、訓(xùn)練數(shù)據(jù)集高速讀取,避免GPU/NPU因存儲(chǔ)I/O等待產(chǎn)生空閑,提升GPU/NPU利用率。 2、大模型TB級(jí)Checkpoint文件秒級(jí)保存和加載,減少訓(xùn)練任務(wù)中斷時(shí)間。 3 數(shù)據(jù)導(dǎo)入導(dǎo)出異步化,不占用訓(xùn)練任務(wù)時(shí)長(zhǎng),無(wú)需部署外部遷移工具 1、訓(xùn)練任務(wù)開(kāi)始前將數(shù)據(jù)從 OBS 導(dǎo)入到SFS來(lái)自:專(zhuān)題場(chǎng)景下使用對(duì)象存儲(chǔ)服務(wù)。 立即學(xué)習(xí) 塊存儲(chǔ)服務(wù)EVS:云上堅(jiān)實(shí)的數(shù)據(jù)底座 通過(guò)本課程的學(xué)習(xí),用戶將對(duì)云硬盤(pán)形成系統(tǒng)的理解,掌握云硬盤(pán)的相關(guān)知識(shí)及如何在對(duì)應(yīng)的場(chǎng)景下使用云硬盤(pán)。 課程目標(biāo) 通過(guò)學(xué)習(xí)本課程,對(duì)云硬盤(pán)有系統(tǒng)的了解,并掌握相關(guān)操作。 立即學(xué)習(xí) 內(nèi)容分發(fā)網(wǎng)絡(luò) CDN :提升網(wǎng)絡(luò)響應(yīng)速度來(lái)自:專(zhuān)題
- 深度學(xué)習(xí) 訓(xùn)練時(shí)間 相關(guān)內(nèi)容
-
場(chǎng)景下使用對(duì)象存儲(chǔ)服務(wù)。 立即學(xué)習(xí) 塊存儲(chǔ)服務(wù)EVS:云上堅(jiān)實(shí)的數(shù)據(jù)底座 通過(guò)本課程的學(xué)習(xí),用戶將對(duì)云硬盤(pán)形成系統(tǒng)的理解,掌握云硬盤(pán)的相關(guān)知識(shí)及如何在對(duì)應(yīng)的場(chǎng)景下使用云硬盤(pán)。 課程目標(biāo) 通過(guò)學(xué)習(xí)本課程,對(duì)云硬盤(pán)有系統(tǒng)的了解,并掌握相關(guān)操作。 立即學(xué)習(xí) 內(nèi)容分發(fā)網(wǎng)絡(luò)CDN:提升網(wǎng)絡(luò)響應(yīng)速度來(lái)自:專(zhuān)題視頻分析 第7章 自然語(yǔ)言處理 第8章 語(yǔ)音識(shí)別 AI開(kāi)發(fā)平臺(tái) ModelArts ModelArts是面向開(kāi)發(fā)者的一站式AI開(kāi)發(fā)平臺(tái),為機(jī)器學(xué)習(xí)與深度學(xué)習(xí)提供海量數(shù)據(jù)預(yù)處理及半自動(dòng)化標(biāo)注、大規(guī)模分布式Training、自動(dòng)化模型生成,及端-邊-云模型按需部署能力,幫助用戶快速創(chuàng)建和部署模型,管理全周期AI工作流。來(lái)自:百科
- 深度學(xué)習(xí) 訓(xùn)練時(shí)間 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 鯤鵬高校訓(xùn)練營(yíng)-深圳大學(xué)&鯤鵬聯(lián)合出品 鯤鵬高校訓(xùn)練營(yíng)-深圳大學(xué)&鯤鵬聯(lián)合出品 時(shí)間:2021-04-27 15:56:27 內(nèi)容簡(jiǎn)介: 算力已成為驅(qū)動(dòng)社會(huì)經(jīng)濟(jì)發(fā)展的新生產(chǎn)力,多業(yè)務(wù)場(chǎng)景、多種數(shù)據(jù)結(jié)構(gòu),帶來(lái)多樣性算力的需求。鯤鵬產(chǎn)業(yè)構(gòu)筑了從最基礎(chǔ)的處理器、硬件來(lái)自:百科MXNet等深度學(xué)習(xí)框架 推理加速型Pi2 Pi2型 彈性云服務(wù)器 采用專(zhuān)為AI推理打造的NVIDIA Tesla T4 GPU,能夠提供超強(qiáng)的實(shí)時(shí)推理能力。Pi2型彈性云服務(wù)器借助T4的INT8運(yùn)算器,能夠提供最大130TOPS的INT8算力。Pi2也可以支持輕量級(jí)訓(xùn)練場(chǎng)景。 Pi2型彈性云服務(wù)器的規(guī)格來(lái)自:百科如何在CDN控制臺(tái)設(shè)置狀態(tài)碼的緩存時(shí)間? 如何在CDN控制臺(tái)設(shè)置狀態(tài)碼的緩存時(shí)間? 時(shí)間:2022-08-04 20:22:42 【CDN流量包活動(dòng)】 CDN節(jié)點(diǎn)回源站請(qǐng)求資源時(shí),源站會(huì)返回響應(yīng)的狀態(tài)碼,您可以在CDN控制臺(tái)設(shè)置狀態(tài)碼的緩存時(shí)間,當(dāng)客戶端再次請(qǐng)求相同資源時(shí),不會(huì)觸發(fā)回源,減少回源概率,減輕源站壓力。來(lái)自:百科準(zhǔn)確性還能提升。城市治理中的事項(xiàng)類(lèi)別非常多,但很多事件的數(shù)據(jù)量很少,用常規(guī)的方式訓(xùn)練模型一個(gè)算法耗時(shí)長(zhǎng),準(zhǔn)確率低。我們依托于預(yù)訓(xùn)練大模型、小樣本學(xué)習(xí)等技術(shù),可以對(duì)這種數(shù)據(jù)量小的城市問(wèn)題進(jìn)行模型訓(xùn)練學(xué)習(xí)。同時(shí)通過(guò)圖像生成等數(shù)據(jù)增強(qiáng)技術(shù),可以實(shí)現(xiàn)把白天的圖像遷移成晚上,晴天的圖像遷移來(lái)自:百科AI開(kāi)發(fā)平臺(tái)產(chǎn)品為用戶提供一站式機(jī)器/深度學(xué)習(xí)解決方案。支持?jǐn)?shù)據(jù)預(yù)處理、模型構(gòu)建、模型訓(xùn)練、模型評(píng)估、模型服務(wù)的全流程開(kāi)發(fā)及部署支持,提供多樣化建模方式,幫助用戶快速創(chuàng)建和部署模型 AI開(kāi)發(fā)平臺(tái)產(chǎn)品為用戶提供一站式機(jī)器/深度學(xué)習(xí)解決方案。支持?jǐn)?shù)據(jù)預(yù)處理、模型構(gòu)建、模型訓(xùn)練、模型評(píng)估、模型服務(wù)的全來(lái)自:專(zhuān)題GaussDB 學(xué)習(xí) GaussDB學(xué)習(xí) 云數(shù)據(jù)庫(kù) GaussDB,華為自主創(chuàng)新研發(fā)的分布式關(guān)系型數(shù)據(jù)庫(kù),具有高性能、高可用、高安全、低成本的特點(diǎn),企業(yè)核心數(shù)據(jù)上云信賴(lài)之選。如何快速學(xué)習(xí)和了解GaussDB呢? 云數(shù)據(jù)庫(kù)GaussDB,華為自主創(chuàng)新研發(fā)的分布式關(guān)系型數(shù)據(jù)庫(kù),具有高性能來(lái)自:專(zhuān)題平臺(tái)穩(wěn)定可靠:繼承公有云ModelArts平臺(tái)大規(guī)模商用成熟硬件平臺(tái)和軟件架構(gòu) AI開(kāi)發(fā)平臺(tái)ModelArts ModelArts是面向開(kāi)發(fā)者的一站式AI開(kāi)發(fā)平臺(tái),為機(jī)器學(xué)習(xí)與深度學(xué)習(xí)提供海量數(shù)據(jù)預(yù)處理及半自動(dòng)化標(biāo)注、大規(guī)模分布式Training、自動(dòng)化模型生成,及端-邊-云模型按需部署能力,幫助用戶快速創(chuàng)建和部署模型,管理全周期AI工作流。來(lái)自:百科變壓器工作現(xiàn)場(chǎng)的視頻進(jìn)行實(shí)時(shí)分析,基于大規(guī)模呼吸器圖片數(shù)據(jù)檢測(cè)訓(xùn)練,將算法加載到攝像機(jī)內(nèi)部,利用攝像機(jī)AI芯片強(qiáng)大的分析推理能力,實(shí)現(xiàn)視頻畫(huà)面實(shí)時(shí)分析,通過(guò)深度學(xué)習(xí)算法準(zhǔn)確判定呼吸器顏色是否變色,監(jiān)理人員能夠第一時(shí)間獲取相關(guān)圖像,并及時(shí)更換硅膠,為變壓器安全運(yùn)行提供安全保障。 商品鏈接:<<呼吸器顏色智能識(shí)別>>來(lái)自:云商店云知識(shí) 漂浮物識(shí)別算法 漂浮物識(shí)別算法 時(shí)間:2021-01-07 10:46:15 視頻監(jiān)控 視頻檢測(cè) 華為云好望商城漂浮物識(shí)別算法,是基于深度學(xué)習(xí)的計(jì)算機(jī)智能視頻物體檢測(cè)算法,且通過(guò)規(guī)?;钠∥飻?shù)據(jù)(塑料泡沫,垃圾袋,河道漂浮植被)檢測(cè)訓(xùn)練,賦予監(jiān)測(cè)系統(tǒng)智能檢測(cè)能力,從而準(zhǔn)確判斷檢測(cè)場(chǎng)景內(nèi)的是否有漂浮物類(lèi)型目標(biāo)來(lái)自:云商店第四屆鯤鵬杯山東新動(dòng)能軟件創(chuàng)新創(chuàng)業(yè)大賽分賽鯤鵬訓(xùn)練營(yíng)開(kāi)發(fā)者大賽 第四屆鯤鵬杯山東新動(dòng)能軟件創(chuàng)新創(chuàng)業(yè)大賽分賽鯤鵬訓(xùn)練營(yíng)開(kāi)發(fā)者大賽 時(shí)間:2020-12-08 17:11:01 華為云“云上先鋒”· AI挑戰(zhàn)賽圍繞生活中的街景圖像展開(kāi),選手可以通過(guò)深度學(xué)習(xí)算法進(jìn)行圖像語(yǔ)義分割,對(duì)圖像進(jìn)行像素級(jí)別的分類(lèi)。來(lái)自:百科力,為神經(jīng)網(wǎng)絡(luò)的優(yōu)化開(kāi)辟一條獨(dú)特的路徑。 張量加速引擎TBE的三種應(yīng)用場(chǎng)景 1、一般情況下,通過(guò)深度學(xué)習(xí)框架中的標(biāo)準(zhǔn)算子實(shí)現(xiàn)的神經(jīng)網(wǎng)絡(luò)模型已經(jīng)通過(guò)GPU或者其它類(lèi)型神經(jīng)網(wǎng)絡(luò)芯片做過(guò)訓(xùn)練。如果將這個(gè)神經(jīng)網(wǎng)絡(luò)模型繼續(xù)運(yùn)行在昇騰AI處理器上時(shí),希望盡量在不改變?cè)即a的前提下,在昇騰A來(lái)自:百科
- 深度學(xué)習(xí)模型訓(xùn)練流程思考
- 淺談深度學(xué)習(xí)中的混合精度訓(xùn)練
- 深度學(xué)習(xí)算法中的預(yù)訓(xùn)練(Pretraining)
- 《駕馭MXNet:深度剖析分布式深度學(xué)習(xí)訓(xùn)練的高效之道》
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:遷移學(xué)習(xí)與預(yù)訓(xùn)練模型
- 神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)筆記(四)訓(xùn)練集
- PyTorch 深度學(xué)習(xí)實(shí)戰(zhàn) |用 TensorFlow 訓(xùn)練神經(jīng)網(wǎng)絡(luò)
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型的分布式訓(xùn)練
- 深度學(xué)習(xí)算法中的協(xié)同訓(xùn)練(Co-training)
- 《鴻蒙系統(tǒng)下AI模型訓(xùn)練加速:時(shí)間成本的深度剖析與優(yōu)化策略》