- 深度學(xué)習(xí) 雙輸入多輸出 內(nèi)容精選 換一換
-
來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見的問(wèn)題。 目標(biāo)學(xué)員來(lái)自:百科
- 深度學(xué)習(xí) 雙輸入多輸出 相關(guān)內(nèi)容
-
大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢(shì)由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識(shí)別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場(chǎng)景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來(lái)自:百科本次訓(xùn)練所使用的經(jīng)過(guò)數(shù)據(jù)增強(qiáng)的圖片 基于深度學(xué)習(xí)的識(shí)別方法 與傳統(tǒng)的機(jī)器學(xué)習(xí)使用簡(jiǎn)單模型執(zhí)行分類等任務(wù)不同,此次訓(xùn)練我們使用深度神經(jīng)網(wǎng)絡(luò)作為訓(xùn)練模型,即深度學(xué)習(xí)。深度學(xué)習(xí)通過(guò)人工神經(jīng)網(wǎng)絡(luò)來(lái)提取特征,不同層的輸出常被視為神經(jīng)網(wǎng)絡(luò)提取出的不同尺度的特征,上一層的輸出作為下一層的輸入,層層連接構(gòu)成深度神經(jīng)網(wǎng)絡(luò)。 1994年,Yann來(lái)自:百科
- 深度學(xué)習(xí) 雙輸入多輸出 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 基于深度學(xué)習(xí)算法的 語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過(guò)程。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來(lái)自:百科劃分?jǐn)嗑浼疤砑訕?biāo)點(diǎn)符號(hào),提升輸出文本的可閱讀性。 中英文混合識(shí)別 支持在中文句子識(shí)別中夾帶英文字母、數(shù)字等,從而實(shí)現(xiàn)中、英文以及數(shù)字的混合識(shí)別。 即時(shí)輸出識(shí)別結(jié)果 連續(xù)識(shí)別語(yǔ)音流內(nèi)容,即時(shí)輸出結(jié)果,并可根據(jù)上下文語(yǔ)言模型自動(dòng)校正。 自動(dòng)靜音檢測(cè) 對(duì)輸入語(yǔ)音流進(jìn)行靜音檢測(cè),識(shí)別效率和準(zhǔn)確率更高。來(lái)自:百科一鍵式部署,分鐘級(jí)實(shí)例發(fā)放,聚焦核心業(yè)務(wù) GPU云服務(wù)器 的優(yōu)勢(shì) NVMe SSD 最高68萬(wàn)IOPS,消除存儲(chǔ)瓶頸,提升整體性能 雙精度計(jì)算 提供較CPU上百倍的雙精度計(jì)算能力 無(wú)縫遷移 支持多種科學(xué)計(jì)算軟件 圖形工作站 提供專業(yè)級(jí)CAD、視頻渲染、圖形處理所需的強(qiáng)大計(jì)算能力 GPU云服務(wù)器的優(yōu)勢(shì)來(lái)自:專題支持邊緣接入與處理,大幅降低業(yè)務(wù)接入成本 3.動(dòng)作識(shí)別 基于對(duì)視頻的前后幀信息、光流運(yùn)動(dòng)信息分析、場(chǎng)景內(nèi)容信息識(shí)別等分析,檢測(cè)和識(shí)別視頻動(dòng)作 優(yōu)勢(shì) 多模態(tài)識(shí)別 綜合圖像、光流、聲音等信息,識(shí)別動(dòng)作更準(zhǔn)確 識(shí)別準(zhǔn)確 采用3D卷積神經(jīng)網(wǎng)絡(luò)算法,動(dòng)作識(shí)別準(zhǔn)確度高 對(duì)復(fù)雜場(chǎng)景魯棒性強(qiáng) 對(duì)不同天氣條來(lái)自:百科支持合同簽名與蓋章區(qū)域檢測(cè),提升合規(guī)審核效率 識(shí)別精度高 采用先進(jìn)的深度學(xué)習(xí)算法,優(yōu)化業(yè)務(wù)場(chǎng)景,文字識(shí)別精度高 3.醫(yī)療保險(xiǎn) 自動(dòng)識(shí)別醫(yī)療單據(jù)藥品明細(xì)、年齡、性別等關(guān)鍵字段并錄入系統(tǒng),結(jié)合身份證、銀行卡 OCR ,快速完成保險(xiǎn)理賠業(yè)務(wù) 優(yōu)勢(shì) 支持樣式多 支持多地醫(yī)院不同格式的醫(yī)療發(fā)票識(shí)別 支持復(fù)雜背景 支來(lái)自:百科