- 深度學(xué)習(xí) 數(shù)據(jù)訓(xùn)練 內(nèi)容精選 換一換
-
AI技術(shù)領(lǐng)域課程--機(jī)器學(xué)習(xí) AI技術(shù)領(lǐng)域課程--深度學(xué)習(xí) AI技術(shù)領(lǐng)域課程--生成對(duì)抗網(wǎng)絡(luò) AI技術(shù)領(lǐng)域課程--強(qiáng)化學(xué)習(xí) AI技術(shù)領(lǐng)域課程--圖網(wǎng)絡(luò) AI技術(shù)領(lǐng)域課程--機(jī)器學(xué)習(xí) AI技術(shù)領(lǐng)域課程--深度學(xué)習(xí) AI技術(shù)領(lǐng)域課程--生成對(duì)抗網(wǎng)絡(luò) AI技術(shù)領(lǐng)域課程--強(qiáng)化學(xué)習(xí) AI技術(shù)領(lǐng)域課程--圖網(wǎng)絡(luò)來(lái)自:專題
- 深度學(xué)習(xí) 數(shù)據(jù)訓(xùn)練 相關(guān)內(nèi)容
-
AI技術(shù)領(lǐng)域課程--機(jī)器學(xué)習(xí) AI技術(shù)領(lǐng)域課程--深度學(xué)習(xí) AI技術(shù)領(lǐng)域課程--生成對(duì)抗網(wǎng)絡(luò) AI技術(shù)領(lǐng)域課程--強(qiáng)化學(xué)習(xí) AI技術(shù)領(lǐng)域課程--圖網(wǎng)絡(luò) AI技術(shù)領(lǐng)域課程--機(jī)器學(xué)習(xí) AI技術(shù)領(lǐng)域課程--深度學(xué)習(xí) AI技術(shù)領(lǐng)域課程--生成對(duì)抗網(wǎng)絡(luò) AI技術(shù)領(lǐng)域課程--強(qiáng)化學(xué)習(xí) AI技術(shù)領(lǐng)域課程--圖網(wǎng)絡(luò)來(lái)自:專題開發(fā)平臺(tái),為機(jī)器學(xué)習(xí)與深度學(xué)習(xí)提供海量數(shù)據(jù)預(yù)處理及半自動(dòng)化標(biāo)注、大規(guī)模分布式Training、自動(dòng)化模型生成,及端-邊-云模型按需部署能力,幫助用戶快速創(chuàng)建和部署模型,管理全周期AI工作流。 一站式 開“箱”即用,涵蓋AI開發(fā)全流程,包含數(shù)據(jù)處理、模型開發(fā)、訓(xùn)練、管理、部署功能,可靈活使用其中一個(gè)或多個(gè)功能。來(lái)自:百科
- 深度學(xué)習(xí) 數(shù)據(jù)訓(xùn)練 更多內(nèi)容
-
析平臺(tái) 數(shù)據(jù)湖治理中心 數(shù)據(jù)湖治理中心(DGC)是數(shù)據(jù)全生命周期一站式開發(fā)運(yùn)營(yíng)平臺(tái),提供數(shù)據(jù)集成、數(shù)據(jù)開發(fā)、數(shù)據(jù)治理、數(shù)據(jù)服務(wù)、數(shù)據(jù)可視化等功能,支持行業(yè)知識(shí)庫(kù)智能化建設(shè),支持大數(shù)據(jù)存儲(chǔ)、大數(shù)據(jù)計(jì)算分析引擎等數(shù)據(jù)底座,幫助企業(yè)客戶快速構(gòu)建數(shù)據(jù)運(yùn)營(yíng)能力。 數(shù)據(jù)接入服務(wù) 數(shù)據(jù)接入服務(wù)(Data來(lái)自:專題Euler操作系統(tǒng)、openGauss數(shù)據(jù)庫(kù)基礎(chǔ)知識(shí),還能在心得專區(qū)分享自己的學(xué)習(xí)體會(huì)。學(xué)生和講師、學(xué)生之間都能深度互動(dòng),充分提升學(xué)習(xí)趣味性和積極性。 03 課后考試,即時(shí)了解學(xué)習(xí)效果 訓(xùn)練營(yíng)在課程結(jié)束后,會(huì)組織線上隨堂考試,檢測(cè)學(xué)生學(xué)習(xí)效果。學(xué)生可通過(guò)電腦、手機(jī)等多設(shè)備隨時(shí)隨地來(lái)自:百科ens Kit上運(yùn)行。 ModelArts自動(dòng)學(xué)習(xí)功能訓(xùn)練生成的模型,暫時(shí)不支持用于Huawei HiLens平臺(tái) 。 AI開發(fā)平臺(tái) ModelArts ModelArts是面向開發(fā)者的一站式AI開發(fā)平臺(tái),為機(jī)器學(xué)習(xí)與深度學(xué)習(xí)提供海量數(shù)據(jù)預(yù)處理及半自動(dòng)化標(biāo)注、大規(guī)模分布式Traini來(lái)自:百科署。2. 支持全場(chǎng)景數(shù)據(jù)的處理:AI Studio支持非結(jié)構(gòu)化數(shù)據(jù)、結(jié)構(gòu)化數(shù)據(jù)和時(shí)序數(shù)據(jù)的端到端AI化處理,包括數(shù)據(jù)集成、數(shù)據(jù)清洗、數(shù)據(jù)標(biāo)注、模型訓(xùn)練、模型優(yōu)化和模型部署等環(huán)節(jié)。3. 提供多種功能模塊:AI Studio提供了數(shù)據(jù)管理平臺(tái)、人工智能平臺(tái)、數(shù)據(jù)標(biāo)注平臺(tái)、模型工廠、推來(lái)自:專題華為云分布式關(guān)系型數(shù)據(jù)庫(kù)是什么 華為數(shù)據(jù)庫(kù) GaussDB _GaussDB數(shù)據(jù)庫(kù)的優(yōu)點(diǎn)_【免費(fèi)】_GaussDB分布式數(shù)據(jù)庫(kù)_數(shù)據(jù)庫(kù)平臺(tái) 關(guān)系數(shù)據(jù)庫(kù)管理系統(tǒng)_數(shù)據(jù)庫(kù)管理系統(tǒng)、數(shù)據(jù)庫(kù)應(yīng)用 數(shù)據(jù)庫(kù)軟件免費(fèi)版 云數(shù)據(jù)庫(kù)免費(fèi)_云數(shù)據(jù)庫(kù)免費(fèi)試用 免費(fèi)數(shù)據(jù)庫(kù)GaussDB NoSQL_云數(shù)據(jù)庫(kù)_數(shù)據(jù)庫(kù)免費(fèi)嗎來(lái)自:專題華為云計(jì)算 云知識(shí) 網(wǎng)絡(luò)人工智能高校訓(xùn)練營(yíng)-中山大學(xué)&網(wǎng)絡(luò)人工智能聯(lián)合出品 網(wǎng)絡(luò)人工智能高校訓(xùn)練營(yíng)-中山大學(xué)&網(wǎng)絡(luò)人工智能聯(lián)合出品 時(shí)間:2021-04-27 15:59:32 內(nèi)容簡(jiǎn)介: 將介紹人工智能基本知識(shí)體系,機(jī)器學(xué)習(xí)、深度學(xué)習(xí)、強(qiáng)化學(xué)習(xí)基礎(chǔ)與實(shí)踐。時(shí)空預(yù)測(cè)問(wèn)題的AutoML求解—來(lái)自:百科需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:掌握學(xué)習(xí)算法定義與機(jī)器學(xué)習(xí)的流程;了解常用機(jī)器學(xué)習(xí)算法;了解超參數(shù)、梯度下降和交叉驗(yàn)證等概念。 課程大綱 1. 機(jī)器學(xué)習(xí)算法 2. 機(jī)器學(xué)習(xí)的分類 3. 機(jī)器學(xué)習(xí)的整體流程來(lái)自:百科比。P2v型 彈性云服務(wù)器 支持GPU NVLink技術(shù),實(shí)現(xiàn)GPU之間的直接通信,提升GPU之間的數(shù)據(jù)傳輸效率。能夠提供超高的通用計(jì)算能力,適用于AI深度學(xué)習(xí)、科學(xué)計(jì)算,在深度學(xué)習(xí)訓(xùn)練、科學(xué)計(jì)算、計(jì)算流體動(dòng)力學(xué)、計(jì)算金融、地震分析、分子建模、基因組學(xué)等領(lǐng)域都能表現(xiàn)出巨大的計(jì)算優(yōu)勢(shì)。來(lái)自:百科
- 深度學(xué)習(xí)模型訓(xùn)練流程思考
- 淺談深度學(xué)習(xí)中的混合精度訓(xùn)練
- 深度學(xué)習(xí)算法中的預(yù)訓(xùn)練(Pretraining)
- ATCS 一個(gè)用于訓(xùn)練深度學(xué)習(xí)模型的數(shù)據(jù)集
- tensorflow學(xué)習(xí):準(zhǔn)備訓(xùn)練數(shù)據(jù)和構(gòu)建訓(xùn)練模型
- 《駕馭MXNet:深度剖析分布式深度學(xué)習(xí)訓(xùn)練的高效之道》
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:遷移學(xué)習(xí)與預(yù)訓(xùn)練模型
- 神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)筆記(四)訓(xùn)練集
- PyTorch 深度學(xué)習(xí)實(shí)戰(zhàn) |用 TensorFlow 訓(xùn)練神經(jīng)網(wǎng)絡(luò)
- 深度學(xué)習(xí)煉丹-數(shù)據(jù)增強(qiáng)