- 深度學(xué)習(xí) 卷積神經(jīng)網(wǎng)絡(luò)從入門到精 內(nèi)容精選 換一換
-
1. 了解精益敏捷DevOps知識(shí)體系:內(nèi)容涵蓋精益、敏捷與DevOps的方法實(shí)踐知識(shí)體系 2. 理論結(jié)合實(shí)踐及工具落地:了解精益敏捷DevOps方法與實(shí)踐如何結(jié)合工具進(jìn)行良好落地 3. 深度學(xué)習(xí)DevOps轉(zhuǎn)型的策略:學(xué)習(xí)精益理論、Kanban體系、敏捷與DevOps、混沌工程來自:百科通過體系化的 大數(shù)據(jù)培訓(xùn) 課程,可以幫助您快速完成學(xué)習(xí)覆蓋,讓您輕松了解大數(shù)據(jù)分析、大數(shù)據(jù)平臺(tái)應(yīng)用、什么是大數(shù)據(jù) 大數(shù)據(jù)入門與應(yīng)用 本次大數(shù)據(jù)培訓(xùn)課程學(xué)習(xí),我們首先從“什么是大數(shù)據(jù)”開始,到華為大數(shù)據(jù)解決方案介紹,接著分享華為大數(shù)據(jù)的應(yīng)用案例,大數(shù)據(jù)技術(shù)學(xué)習(xí)認(rèn)證指南,幫助您深度了解“大數(shù)據(jù)分析與應(yīng)用”。來自:專題
- 深度學(xué)習(xí) 卷積神經(jīng)網(wǎng)絡(luò)從入門到精 相關(guān)內(nèi)容
-
流程編排器調(diào)用框架管理器中模型管家,啟動(dòng)離線模型執(zhí)行器,將離線模型加載到昇騰AI處理器上,最后再通過整個(gè)軟件棧完成離線模型的執(zhí)行。從離線模型的誕生,到加載進(jìn)入昇騰AI處理器硬件,直至最后的功能運(yùn)行,離線框架管理器始終發(fā)揮著管理的作用。 華為云 面向未來的智能世界,數(shù)字化是企業(yè)發(fā)展來自:百科主備架構(gòu)無法根本解決問題,那來看看主從式架構(gòu)。 部署模式和主備機(jī)模式相似,但備機(jī)上升為從機(jī)角色,也對(duì)外提供一定的數(shù)據(jù)服務(wù)。應(yīng)用程序可以通過讀寫分離方式分散壓力,優(yōu)點(diǎn)明顯,資源利用率提升,從機(jī)擴(kuò)展性靈活等,但缺點(diǎn)也同樣存在: 1、 數(shù)據(jù)延遲問題,數(shù)據(jù)同步到從機(jī)數(shù)據(jù)庫時(shí)會(huì)有延遲 2、 寫操作的性能壓力,還是集中在主機(jī)上來自:百科
- 深度學(xué)習(xí) 卷積神經(jīng)網(wǎng)絡(luò)從入門到精 更多內(nèi)容
-
分類、基于場(chǎng)景內(nèi)容或者物體的廣告推薦等功能更加準(zhǔn)確。 圖1 圖像標(biāo)簽 示例圖 名人識(shí)別 利用深度神經(jīng)網(wǎng)絡(luò)模型對(duì)圖片內(nèi)容進(jìn)行檢測(cè),準(zhǔn)確識(shí)別圖像中包含的影視明星及網(wǎng)紅人物。 翻拍識(shí)別 利用深度神經(jīng)網(wǎng)絡(luò)算法判斷條形碼圖片為原始拍攝,還是經(jīng)過二次翻拍、打印翻拍等手法二次處理的圖片。利用翻拍識(shí)來自:百科實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 本實(shí)驗(yàn)主要介紹基于AI1型 彈性云服務(wù)器 完成黑白圖像上色應(yīng)用開發(fā),通過該實(shí)驗(yàn)了解將神經(jīng)網(wǎng)絡(luò)模型部署到昇騰310處理器運(yùn)行的一般過程和方法。 基本要求: 1. 對(duì)業(yè)界主流的深度學(xué)習(xí)框架(Caffe、TensorFlow等)有一定了解。 2. 具備一定的C++、Shell、Python腳本開發(fā)能力。來自:百科視頻編輯 ( Video Content Processing )服務(wù),基于對(duì)視頻的整體分析,提供封面、拆條、摘要等能力 功能描述 視頻拆條:基于深度學(xué)習(xí)多模態(tài)信息分析技術(shù),快速準(zhǔn)確地把長(zhǎng)視頻分割成不同主題的片段,提高視頻識(shí)別、剪輯、檢索等處理的效率 視頻封面:基于互聯(lián)網(wǎng)在線視頻的內(nèi)容理解,快速輸出具有代表性和吸引力的精彩封面來自:百科一句話識(shí)別 :可以實(shí)現(xiàn)1分鐘以內(nèi)音頻到文字的轉(zhuǎn)換。對(duì)于用戶上傳的二進(jìn)制音頻格式數(shù)據(jù),系統(tǒng)經(jīng)過處理,生成語音對(duì)應(yīng)的文字。 錄音文件識(shí)別:對(duì)于錄制的長(zhǎng)語音進(jìn)行識(shí)別,轉(zhuǎn)寫成文字,提供不同領(lǐng)域模型,具備良好的可擴(kuò)展性,支持熱詞定制。 ASRC優(yōu)勢(shì) 高識(shí)別率 基于深度學(xué)習(xí)技術(shù),對(duì)特定領(lǐng)域場(chǎng)景和語料進(jìn)行優(yōu)化,識(shí)別率達(dá)到業(yè)界領(lǐng)先。來自:百科化準(zhǔn)確率高,在新聞媒資、影視素材、綜藝娛樂、廣告推薦、攝影精修、教育等多種領(lǐng)域場(chǎng)景下具有非常高的準(zhǔn)確率。 圖像識(shí)別 服務(wù)采用最新技術(shù)在海量數(shù)據(jù)中進(jìn)行模型調(diào)優(yōu),服務(wù)泛化準(zhǔn)確率高,在新聞媒資、影視素材、綜藝娛樂、廣告推薦、攝影精修、教育等多種領(lǐng)域場(chǎng)景下具有非常高的準(zhǔn)確率。 快速定制 行業(yè)定制來自:專題物理結(jié)構(gòu),包括存儲(chǔ)結(jié)構(gòu)、存取方法、輸入方式等。程序員負(fù)擔(dān)非常重,非程序員無法使用計(jì)算機(jī)系統(tǒng)。 第二, 文件系統(tǒng)階段,這個(gè)時(shí)期大約從20世紀(jì)50年代后期到60年代中期,這個(gè)階段里數(shù)據(jù)組織成獨(dú)立的數(shù)據(jù)文件,按文件名訪問,按記錄進(jìn)行存取的方式進(jìn)行 數(shù)據(jù)管理 ,由文件系統(tǒng)提供文件打開、關(guān)閉、讀寫和存取。來自:百科(ModelArts)提供給開發(fā)者,從數(shù)據(jù)準(zhǔn)備到算法開發(fā)、模型訓(xùn)練,最后把模型部署起來,集成到生產(chǎn)環(huán)境。一站式完成所有任務(wù)。 ModelArts特色功能如下所示: 1、 數(shù)據(jù)治理 支持?jǐn)?shù)據(jù)篩選、標(biāo)注等數(shù)據(jù)處理,提供數(shù)據(jù)集版本管理,特別是深度學(xué)習(xí)的大數(shù)據(jù)集,讓訓(xùn)練結(jié)果可重現(xiàn)。 2、極“快”致“簡(jiǎn)”模型訓(xùn)練來自:專題布式緩存服務(wù)Redis,華為云專家傾囊相授,5節(jié)精編實(shí)戰(zhàn)課,帶你從入門到實(shí)戰(zhàn)輕松玩轉(zhuǎn)Redis。 課程簡(jiǎn)介 本期課程結(jié)合華為云分布式緩存服務(wù)Redis(D CS ),從入門到實(shí)踐應(yīng)用,循序漸進(jìn)一站式學(xué)習(xí)。5節(jié)實(shí)戰(zhàn)精品課,囊括DCS入門、proxy集群和原生集群、大key熱key在線分來自:百科
- 《深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)從入門到精通》
- 《深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)從入門到精通》——2.7 內(nèi)外卷積運(yùn)算
- 《深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)從入門到精通》——2.8 膨脹卷積運(yùn)算
- 《深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)從入門到精通》——2.10 卷積面計(jì)算
- 《深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)從入門到精通》——1概述
- 《深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)從入門到精通》——2.3 導(dǎo)數(shù)公式
- 《深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)從入門到精通》——2.14 丟失輸出
- 《深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)從入門到精通》——2.2 矩陣運(yùn)算
- 《深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)從入門到精通》——2.15 丟失連接
- 《深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)從入門到精通》——1.2 卷積神經(jīng)網(wǎng)絡(luò)的形成和演變