- 深度學(xué)習(xí) 城市人流 內(nèi)容精選 換一換
-
支持發(fā)票基礎(chǔ)信息、車(chē)輛信息等多項(xiàng)字段自動(dòng)識(shí)別和結(jié)構(gòu)化提取 簽名和蓋章自動(dòng)檢測(cè) 支持合同簽名與蓋章區(qū)域檢測(cè),提升合規(guī)審核效率 識(shí)別精度高 采用先進(jìn)的深度學(xué)習(xí)算法,優(yōu)化業(yè)務(wù)場(chǎng)景,文字識(shí)別精度高 3.醫(yī)療保險(xiǎn) 自動(dòng)識(shí)別醫(yī)療單據(jù)藥品明細(xì)、年齡、性別等關(guān)鍵字段并錄入系統(tǒng),結(jié)合身份證、銀行卡 OCR ,快速完成保險(xiǎn)理賠業(yè)務(wù)來(lái)自:百科“用”,全面云使能支持應(yīng)用開(kāi)發(fā)及深度用云 “管”,全球5大運(yùn)維中心,多種運(yùn)維服務(wù)選擇 華為云Stack 技術(shù)創(chuàng)新圖譜 深度用云,是業(yè)務(wù)與技術(shù)深度融合的成果。華為云Stack在技術(shù)領(lǐng)域積極探索、不斷創(chuàng)新、持續(xù)積累,將業(yè)務(wù)訴求轉(zhuǎn)化為技術(shù)方案,賦能政企實(shí)現(xiàn)深度用云 點(diǎn)擊 了解更多 訪問(wèn)華為云Stack官網(wǎng),獲取更詳細(xì)資料來(lái)自:百科
- 深度學(xué)習(xí) 城市人流 相關(guān)內(nèi)容
-
端側(cè)對(duì)采集的數(shù)據(jù)進(jìn)行本地分析,大大減少上云數(shù)據(jù)流量,節(jié)約存儲(chǔ)成本。 統(tǒng)一技能開(kāi)發(fā)平臺(tái) 軟硬協(xié)同優(yōu)化,統(tǒng)一的Skill開(kāi)發(fā)框架,封裝基礎(chǔ)組件,支持常用深度學(xué)習(xí)模型。 跨平臺(tái)設(shè)計(jì) 支持Ascend芯片、海思35xx系列芯片以及其他市場(chǎng)主流芯片,可覆蓋主流監(jiān)控場(chǎng)景需求。 針對(duì)端側(cè)芯片提供模型轉(zhuǎn)換和算法優(yōu)化。來(lái)自:百科
- 深度學(xué)習(xí) 城市人流 更多內(nèi)容
-
- 深度時(shí)空殘差網(wǎng)絡(luò)在城市人流量預(yù)測(cè)中的應(yīng)用
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:智能城市規(guī)劃與建設(shè)
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:智能城市噪音監(jiān)測(cè)與控制
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:智能交通管控與智慧城市
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:智能城市交通管控與優(yōu)化
- 《MXNet深度學(xué)習(xí)實(shí)戰(zhàn)》—1.1.3 深度學(xué)習(xí)
- 智慧城市管理:基于視覺(jué)識(shí)別引擎和深度學(xué)習(xí)的安全保障數(shù)字化
- 深度學(xué)習(xí)
- 《MXNet深度學(xué)習(xí)實(shí)戰(zhàn)》—1.2 深度學(xué)習(xí)框架
- PyTorch深度學(xué)習(xí)實(shí)戰(zhàn) | 深度學(xué)習(xí)框架(PyTorch)