- 結(jié)構(gòu)游戲中的深度學(xué)習(xí) 內(nèi)容精選 換一換
-
征形成更抽象的高層代表屬性類別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動(dòng)機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來(lái)解釋說(shuō)明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。 深度學(xué)習(xí)的典型模型:卷積神經(jīng)網(wǎng)絡(luò)模型、深度信任網(wǎng)絡(luò)模型、堆棧自編碼網(wǎng)絡(luò)模型。 深度學(xué)習(xí)的應(yīng)用:計(jì)算機(jī)視覺(jué)、 語(yǔ)音識(shí)別 、自然語(yǔ)言處理等其他領(lǐng)域。來(lái)自:百科來(lái)自:百科
- 結(jié)構(gòu)游戲中的深度學(xué)習(xí) 相關(guān)內(nèi)容
-
本課程介紹了雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例,讓你對(duì)雙向深度學(xué)習(xí)有初步的認(rèn)知。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、認(rèn)識(shí)雙向智能。 2、了解深度雙向智能的理論、算法和應(yīng)用示例。 課程大綱 第1章 引言 第2章 雙向智能 第3章 深度雙向智能 華為云 面向未來(lái)的智能世界,數(shù)字化來(lái)自:百科的深度學(xué)習(xí)。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員了解如下知識(shí): 1、高效的結(jié)構(gòu)設(shè)計(jì)。 2、用NAS搜索輕量級(jí)網(wǎng)絡(luò)。 3、數(shù)據(jù)高效的模型壓縮。 4、1bit量化。 課程大綱 第1章 能耗高效的深度學(xué)習(xí)的背景 第2章 高效的神經(jīng)元和結(jié)構(gòu)設(shè)計(jì) 第3章 基于NAS的輕量級(jí)神經(jīng)網(wǎng)絡(luò) 第4章來(lái)自:百科
- 結(jié)構(gòu)游戲中的深度學(xué)習(xí) 更多內(nèi)容
-
云知識(shí) 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科更好的訓(xùn)練效果。 本次訓(xùn)練所使用的經(jīng)過(guò)數(shù)據(jù)增強(qiáng)的圖片 基于深度學(xué)習(xí)的識(shí)別方法 與傳統(tǒng)的機(jī)器學(xué)習(xí)使用簡(jiǎn)單模型執(zhí)行分類等任務(wù)不同,此次訓(xùn)練我們使用深度神經(jīng)網(wǎng)絡(luò)作為訓(xùn)練模型,即深度學(xué)習(xí)。深度學(xué)習(xí)通過(guò)人工神經(jīng)網(wǎng)絡(luò)來(lái)提取特征,不同層的輸出常被視為神經(jīng)網(wǎng)絡(luò)提取出的不同尺度的特征,上一層的輸出來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過(guò)程。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來(lái)自:百科華為云計(jì)算 云知識(shí) DAS 中表結(jié)構(gòu)對(duì)比的操作 DAS中表結(jié)構(gòu)對(duì)比的操作 時(shí)間:2021-05-31 18:02:55 數(shù)據(jù)庫(kù) 在結(jié)構(gòu)方案界面,我們可以對(duì)比兩個(gè)庫(kù)內(nèi)的表的表結(jié)構(gòu),并且可以選擇是否在對(duì)比之后進(jìn)行同步。 步驟1 創(chuàng)建表結(jié)構(gòu)對(duì)比與同步任務(wù); 步驟2 選擇基準(zhǔn)庫(kù)與目標(biāo)庫(kù); 步驟3來(lái)自:百科游戲娛樂(lè) 將游戲娛樂(lè)中的語(yǔ)音聊天轉(zhuǎn)成文字消息,提升用戶閱讀效率和交互體驗(yàn) 優(yōu)勢(shì) 識(shí)別準(zhǔn)確 語(yǔ)音識(shí)別準(zhǔn)確率高 支持熱詞 游戲中的專業(yè)詞匯,可以通過(guò)熱詞表,提高專業(yè)詞匯的語(yǔ)音識(shí)別準(zhǔn)確率 華為云 面向未來(lái)的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)字化成功的關(guān)鍵是以云原生的思維踐行云原生,全數(shù)字化、全云化、AI驅(qū)動(dòng),一切皆服務(wù)。來(lái)自:百科圖喜好的維度,統(tǒng)計(jì)玩家對(duì)地圖的使用情況 查看詳情 相關(guān)課程產(chǎn)品推薦 完成實(shí)名認(rèn)證即可開始學(xué)習(xí) 車聯(lián)網(wǎng)大數(shù)據(jù)駕駛行為分析 作為智能交通的基礎(chǔ),車聯(lián)網(wǎng)的應(yīng)用預(yù)示著工業(yè)技術(shù),交通效率,出行方式的重大改變。微認(rèn)證為您揭秘車聯(lián)網(wǎng)大數(shù)據(jù)背后的密碼,實(shí)現(xiàn)科學(xué)高效的車隊(duì)管理 作為智能交通的基礎(chǔ),來(lái)自:專題,擅長(zhǎng)大規(guī)模視覺(jué)識(shí)別、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了計(jì)算機(jī)視覺(jué)發(fā)展的重要里程碑-傳統(tǒng)方法(如視覺(jué)詞袋模型);傳統(tǒng)方法的三個(gè)步驟及其思想對(duì)未來(lái)的深遠(yuǎn)影響;圖像級(jí)編碼信息用于不同的視覺(jué)任務(wù)并與各種學(xué)習(xí)算法結(jié)合。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、了解傳統(tǒng)方法(如視覺(jué)詞袋模型)及其三個(gè)步驟。來(lái)自:百科日志分析 需要將數(shù)據(jù)進(jìn)行結(jié)構(gòu)化分析,結(jié)構(gòu)化數(shù)據(jù)指能夠用數(shù)字或統(tǒng)一的數(shù)據(jù)模型加以描述的數(shù)據(jù),具有嚴(yán)格的長(zhǎng)度和格式。日志結(jié)構(gòu)化是以日志流為單位,通過(guò)不同的日志提取方式將日志流中的日志進(jìn)行結(jié)構(gòu)化,提取出有固定格式或者相似程度較高的日志,過(guò)濾掉不相關(guān)的日志,以便對(duì)結(jié)構(gòu)化后的日志按照SQL語(yǔ)法進(jìn)行查詢與日志分析。來(lái)自:專題
- 深度學(xué)習(xí) --- 深入理解RNN結(jié)構(gòu)
- 深度學(xué)習(xí)方法解析地震數(shù)據(jù)中的隱含結(jié)構(gòu)
- 深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò):原理、結(jié)構(gòu)與應(yīng)用
- 深度學(xué)習(xí)的學(xué)習(xí)路線
- “燜雞”游戲中的排序問(wèn)題
- 在游戲中學(xué)CSS
- 【深度學(xué)習(xí)】嘿馬深度學(xué)習(xí)筆記第1篇:深度學(xué)習(xí),1.1 深度學(xué)習(xí)與機(jī)器學(xué)習(xí)的區(qū)別【附代碼文檔】
- 動(dòng)手學(xué)深度學(xué)習(xí):優(yōu)化與深度學(xué)習(xí)的關(guān)系
- BERT: 一種基于 Transformer 結(jié)構(gòu)的深度學(xué)習(xí)模型介紹
- 《MXNet深度學(xué)習(xí)實(shí)戰(zhàn)》—1.1.3 深度學(xué)習(xí)