- 基于深度學(xué)習(xí)的驗(yàn)證碼識(shí)別 內(nèi)容精選 換一換
-
務(wù)構(gòu)建發(fā)布,但可能存在一定的生產(chǎn)安全風(fēng)險(xiǎn)。 一種是Master加Agent模式。Master節(jié)點(diǎn)主要是處理調(diào)度構(gòu)建作業(yè),把構(gòu)建分發(fā)到Agent實(shí)際執(zhí)行,監(jiān)視Agent的狀態(tài)。業(yè)務(wù)構(gòu)建發(fā)布的工作交給Agent進(jìn)行,即執(zhí)行Master分配的任務(wù),并返回任務(wù)的進(jìn)度和結(jié)果。 本實(shí)踐采用M來(lái)自:專題云知識(shí) 基于云容器引擎部署NGINX應(yīng)用 基于云容器引擎部署NGINX應(yīng)用 時(shí)間:2020-12-02 11:11:48 本實(shí)驗(yàn)指導(dǎo)用戶基于華為云云容器引擎CCE快速部署NGINX容器應(yīng)用,并管理該容器應(yīng)用的全生命周期的技能鍛煉,使用戶具備將云容器引擎應(yīng)用到實(shí)際項(xiàng)目中的能力。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求來(lái)自:百科
- 基于深度學(xué)習(xí)的驗(yàn)證碼識(shí)別 相關(guān)內(nèi)容
-
支持對(duì)火車票上主要字段進(jìn)行結(jié)構(gòu)化識(shí)別,包括始發(fā)站、目的站、車次、日期、票價(jià)、姓名等。 定額發(fā)票識(shí)別 支持對(duì)定額發(fā)票中的發(fā)票代碼、發(fā)票號(hào)碼、金額信息、發(fā)票地址等信息的結(jié)構(gòu)化識(shí)別。 車輛通行費(fèi)發(fā)票識(shí)別 支持對(duì)車輛通行費(fèi)發(fā)票中的關(guān)鍵文字信息的結(jié)構(gòu)化識(shí)別。 飛機(jī)行程單識(shí)別 支持對(duì)飛機(jī)行程單中全字段的信息結(jié)構(gòu)化識(shí)別。來(lái)自:專題視頻標(biāo)簽 (簡(jiǎn)稱VCT),基于深度學(xué)習(xí)對(duì)視頻進(jìn)行場(chǎng)景分類、人物識(shí)別、語(yǔ)音識(shí)別、文字識(shí)別等多維度分析,形成層次化的分類標(biāo)簽。 功能描述 場(chǎng)景概念識(shí)別 基于對(duì)視頻中的場(chǎng)景信息的分析,輸出豐富而準(zhǔn)確的概念、場(chǎng)景標(biāo)簽 人物識(shí)別 基于對(duì)視頻中的人物信息的分析,輸出準(zhǔn)確的人物標(biāo)簽 視頻 OCR 識(shí)別視頻中出現(xiàn)來(lái)自:百科
- 基于深度學(xué)習(xí)的驗(yàn)證碼識(shí)別 更多內(nèi)容
-
內(nèi)容審核-文本Moderation(Text),基于華為自研的深度學(xué)習(xí)和內(nèi)容審核模型,可自動(dòng)識(shí)別出文本中出現(xiàn)的涉政、色情、廣告、辱罵、灌水等內(nèi)容,幫助客戶降低業(yè)務(wù)違規(guī)風(fēng)險(xiǎn),凈化網(wǎng)絡(luò)環(huán)境,提升用戶體驗(yàn) 功能描述 政治敏感檢測(cè) 識(shí)別文本中的涉政敏感、反動(dòng)等不良信息 涉黃低俗檢測(cè) 識(shí)別文本中不合規(guī)范的涉黃、低俗內(nèi)容 辱罵語(yǔ)句檢測(cè)來(lái)自:百科
時(shí)長(zhǎng)。 5、購(gòu)買的套餐包在生效期內(nèi),扣費(fèi)方式是先扣除已購(gòu)買的套餐包內(nèi)的額度后,超出部分以按需計(jì)費(fèi)的方式進(jìn)行結(jié)算。 6、購(gòu)買的套餐包到期后如果沒有購(gòu)買新的套餐包,系統(tǒng)會(huì)自動(dòng)轉(zhuǎn)為按需計(jì)費(fèi)。 查看詳情 實(shí)時(shí)語(yǔ)音識(shí)別、錄音文件識(shí)別常見問(wèn)題解答 實(shí)時(shí)語(yǔ)音識(shí)別、錄音文件識(shí)別常見問(wèn)題解答 實(shí)時(shí)語(yǔ)音識(shí)別服務(wù)支持哪些語(yǔ)言?來(lái)自:專題
AI機(jī)器人、AI游戲眼鏡、AI美圖……市場(chǎng)上層出不窮的AI產(chǎn)品讓人眼花繚亂。在AI市場(chǎng)的繁榮之下,是日新月異的AI技術(shù)!本期課程依托華為云EI服務(wù),帶領(lǐng)開發(fā)者學(xué)習(xí)和體驗(yàn)多項(xiàng)國(guó)際前沿AI技術(shù)!期望通過(guò)開發(fā)者的學(xué)習(xí),幫助企業(yè)解決實(shí)際問(wèn)題,實(shí)現(xiàn)生產(chǎn)自動(dòng)化、提升效率,同時(shí)這也是華為云奉獻(xiàn)給開發(fā)者們的一場(chǎng)技術(shù)盛宴。 課程簡(jiǎn)介來(lái)自:百科
送需求;高效的調(diào)度算法,確保消息高速發(fā)送 國(guó)內(nèi)三網(wǎng)100%覆蓋(移動(dòng),聯(lián)通,電信),新增支持廣電運(yùn)營(yíng)商;10萬(wàn)級(jí)并發(fā)容量,滿足海量發(fā)送需求;高效的調(diào)度算法,確保消息高速發(fā)送 自定義 華為云MSG SMS 短信內(nèi)容支持按模板或自定義,驗(yàn)證碼位數(shù)可根據(jù)需求配置,滿足企業(yè)不同的業(yè)務(wù)訴求 華來(lái)自:專題
索和分類、基于場(chǎng)景內(nèi)容或者物體的廣告推薦等功能更加準(zhǔn)確。 圖1 圖像標(biāo)簽 示例圖 名人識(shí)別 利用深度神經(jīng)網(wǎng)絡(luò)模型對(duì)圖片內(nèi)容進(jìn)行檢測(cè),準(zhǔn)確識(shí)別圖像中包含的影視明星及網(wǎng)紅人物。 翻拍識(shí)別 利用深度神經(jīng)網(wǎng)絡(luò)算法判斷條形碼圖片為原始拍攝,還是經(jīng)過(guò)二次翻拍、打印翻拍等手法二次處理的圖片。利用翻來(lái)自:百科
法應(yīng)用,并實(shí)現(xiàn)售賣機(jī)的智能化運(yùn)營(yíng),是一個(gè)貫穿數(shù)據(jù)開發(fā)、數(shù)據(jù)采集、數(shù)據(jù)挖掘應(yīng)用的完整項(xiàng)目。 開發(fā)者進(jìn)階課程 《EC-IoT物聯(lián)網(wǎng)技術(shù)開發(fā)實(shí)戰(zhàn)》 EC-IoT是將對(duì)實(shí)時(shí)性、安全性和可靠性有嚴(yán)格要求的應(yīng)用部署在靠近數(shù)據(jù)源頭的網(wǎng)絡(luò)邊緣節(jié)點(diǎn)(如網(wǎng)關(guān))上,讓數(shù)據(jù)在最短的時(shí)間內(nèi)得到分析和處理,來(lái)自:專題
企業(yè)上云時(shí)會(huì)面臨云環(huán)境下的安全挑戰(zhàn),如何應(yīng)對(duì)非法入侵顯得尤為重要,微認(rèn)證通過(guò)對(duì)主機(jī)進(jìn)行安全監(jiān)測(cè),識(shí)別病毒并查殺隔離,保證企業(yè)主機(jī)正常運(yùn)行 立即購(gòu)買 Web暴力破解漏洞挖掘 大數(shù)據(jù)時(shí)代,數(shù)據(jù)泄露事件愈發(fā)的頻繁和嚴(yán)重;暴力破解仍是安全事件的“高發(fā)地”,利用弱口令進(jìn)行暴力破解攻擊的安全事件占近年來(lái)年安全事件總數(shù)的33%來(lái)自:專題
自動(dòng)識(shí)別網(wǎng)絡(luò)圖片內(nèi)的所有文字及其對(duì)應(yīng)位置信息,并能根據(jù)識(shí)別出來(lái)的結(jié)果進(jìn)行聯(lián)系人信息的提取,同時(shí)可供進(jìn)一步的數(shù)據(jù)挖掘后處理操作。 智能分類識(shí)別 自動(dòng)檢測(cè)定位圖片上指定要識(shí)別的票證,一次掃描即可識(shí)別票證的位置坐標(biāo)、結(jié)構(gòu)化識(shí)別的內(nèi)容以及對(duì)應(yīng)的類別。 通用表格識(shí)別 提取表格內(nèi)的文字和所在行列來(lái)自:專題
●通用 表格識(shí)別 ,提取表格內(nèi)的文字和所在行列位置信息,適應(yīng)不同格式的表格。同時(shí)也識(shí)別表格外部的文字區(qū)域。用于各種單據(jù)和報(bào)表的電子化,恢復(fù)結(jié)構(gòu)化信息。 ●通用文字識(shí)別,提取圖片內(nèi)的文字及其對(duì)應(yīng)位置信息,并能夠根據(jù)文字在圖片中的位置進(jìn)行結(jié)構(gòu)化整理工作。 ●手寫文字識(shí)別,識(shí)別文檔中的手寫文字信息,并將識(shí)別的結(jié)構(gòu)化結(jié)果返回給用戶。來(lái)自:專題
用戶駕駛行為的分析結(jié)果。 場(chǎng)景: 本次實(shí)戰(zhàn)的原始數(shù)據(jù)為車主的駕駛行為信息,包括車主在日常的駕駛行為中,是否急加速、急剎車、空擋滑行、超速、疲勞駕駛等信息,通過(guò)Spark組件的強(qiáng)大的分析能力,分析統(tǒng)計(jì)指定時(shí)間段內(nèi),車主急加速、急剎車、空擋滑行、超速、疲勞駕駛等違法行為的次數(shù)。 MapReduce服務(wù)來(lái)自:百科
- 深度學(xué)習(xí)識(shí)別滑動(dòng)驗(yàn)證碼
- 利用深度學(xué)習(xí)識(shí)別滑動(dòng)驗(yàn)證碼缺口位置
- 基于深度學(xué)習(xí)的油藏?cái)?shù)據(jù)分類與識(shí)別
- 基于深度學(xué)習(xí)的性別識(shí)別算法matlab仿真
- 基于深度學(xué)習(xí)的海洋魚類識(shí)別算法matlab仿真
- 基于深度學(xué)習(xí)的鳥類識(shí)別系統(tǒng)matlab仿真
- 基于深度學(xué)習(xí)網(wǎng)絡(luò)的鞋子種類識(shí)別matlab仿真
- 基于深度學(xué)習(xí)網(wǎng)絡(luò)的手勢(shì)識(shí)別算法matlab仿真
- 【2022 年】Python3 爬蟲教程 - 深度學(xué)習(xí)識(shí)別滑動(dòng)驗(yàn)證碼缺口
- 基于深度學(xué)習(xí)網(wǎng)絡(luò)的寶石類型識(shí)別算法matlab仿真