- 基于深度學(xué)習(xí)的無(wú)人駕駛場(chǎng)景識(shí)別 內(nèi)容精選 換一換
-
來(lái)自:百科提供現(xiàn)場(chǎng)組隊(duì),請(qǐng)?jiān)趨①惽疤崆敖M隊(duì)。對(duì)不符合組隊(duì)要求的賽隊(duì),賽務(wù)組有對(duì)其取消晉級(jí)資格的權(quán)利。 3、未滿 18 周歲的報(bào)名者,請(qǐng)?jiān)趫?bào)名前征得有法定監(jiān)護(hù)權(quán)的監(jiān)護(hù)人的同意。 4、參賽開(kāi)發(fā)平臺(tái)采用華為云提供的人工智能開(kāi)發(fā)平臺(tái)及合作伙伴提供的比賽用車(chē)。 5、參賽資料命名請(qǐng)以“無(wú)人車(chē)挑戰(zhàn)杯+隊(duì)來(lái)自:百科
- 基于深度學(xué)習(xí)的無(wú)人駕駛場(chǎng)景識(shí)別 相關(guān)內(nèi)容
-
支持符合IEEE國(guó)際標(biāo)準(zhǔn)的跨鏈協(xié)議框架和分布式多預(yù)言機(jī)功能,可快速互聯(lián)互通無(wú)人機(jī)飛控企業(yè)和監(jiān)管方的 區(qū)塊鏈 系統(tǒng)。 “與華為的合作增強(qiáng)了安擎科技基于區(qū)塊鏈技術(shù)的空域管理能力。在低空域交通數(shù)據(jù)服務(wù)領(lǐng)域,將SafeSky®無(wú)人機(jī)交通管理軟件打造成代表安全、可控的行業(yè)標(biāo)桿。” ——劉瑩 安擎科技創(chuàng)始人兼CEO來(lái)自:百科相信很多小伙伴體驗(yàn)沙箱實(shí)驗(yàn)《使用ModelArts中開(kāi)發(fā)工具學(xué)習(xí)Python(初級(jí))》后,對(duì)Python變成語(yǔ)言有了一個(gè)基礎(chǔ)的認(rèn)知,掌握了Python基礎(chǔ)的語(yǔ)法和使用方式。它的魅力遠(yuǎn)不止于此,在本文中,我們一起來(lái)感受和學(xué)習(xí)Python變成語(yǔ)言的正則表達(dá)式和多線程高級(jí)用法,以及神秘的魔法方法。話不多說(shuō),進(jìn)入實(shí)驗(yàn),我們馬上體驗(yàn)!來(lái)自:百科
- 基于深度學(xué)習(xí)的無(wú)人駕駛場(chǎng)景識(shí)別 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 基于鯤鵬的華為云混合云平臺(tái) 基于鯤鵬的華為云混合云平臺(tái) 時(shí)間:2021-05-28 10:21:45 鯤鵬 云計(jì)算 H CS 6.5.1/8.0是基于鯤鵬的華為云混合云平臺(tái)。 它支持x86和鯤鵬混合部署; 支持容器多集群模式部署; 容器管理面支持容災(zāi)高可用,數(shù)據(jù)面支持應(yīng)用多AZ部署;來(lái)自:百科
使用ModelArts中開(kāi)發(fā)工具學(xué)習(xí)Python(高級(jí)) 本實(shí)驗(yàn)指導(dǎo)用戶基于Notebook來(lái)學(xué)習(xí)Python語(yǔ)言中的正則表達(dá)式進(jìn)行文本信息的匹配、多線程執(zhí)行任務(wù)的實(shí)現(xiàn)和Python中類(lèi)的魔法方法的使用。 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集T來(lái)自:專(zhuān)題
準(zhǔn)確率高:基于改進(jìn)的深度學(xué)習(xí)算法,檢測(cè)準(zhǔn)確率高。 響應(yīng)速度快:響應(yīng)速度小于0.1秒。 媒資 內(nèi)容審核 自動(dòng)識(shí)別媒資中可能存在的涉政、違禁品等信息,避免已發(fā)布的文章存在違規(guī)風(fēng)險(xiǎn)。 場(chǎng)景優(yōu)勢(shì)如下: 快速迭代:持續(xù)快速的迭代文本詞庫(kù),及時(shí)識(shí)別新型不合規(guī)內(nèi)容。 處理速度快:處理速度小于0.1秒。來(lái)自:百科
使用ModelArts中開(kāi)發(fā)工具學(xué)習(xí)Python(高級(jí)) 本實(shí)驗(yàn)指導(dǎo)用戶基于Notebook來(lái)學(xué)習(xí)Python語(yǔ)言中的正則表達(dá)式進(jìn)行文本信息的匹配、多線程執(zhí)行任務(wù)的實(shí)現(xiàn)和Python中類(lèi)的魔法方法的使用。 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集T來(lái)自:專(zhuān)題
智能審核商家/用戶上傳圖像,高效識(shí)別并預(yù)警不合規(guī)圖片,防止涉黃、涉暴、涉政敏感類(lèi)圖像發(fā)布,降低人工審核成本和業(yè)務(wù)違規(guī)風(fēng)險(xiǎn) 優(yōu)勢(shì) 準(zhǔn)確率高 基于改進(jìn)的深度學(xué)習(xí)算法,檢測(cè)準(zhǔn)確率高 處理速度快 基于大規(guī)模GPU集群,快速識(shí)別敏感信息 網(wǎng)站論壇 不合規(guī)圖片的識(shí)別和處理是用戶原創(chuàng)內(nèi)容(UGC)類(lèi)網(wǎng)站的重點(diǎn)工作,來(lái)自:百科
云知識(shí) 圖像識(shí)別 圖像識(shí)別 時(shí)間:2020-10-30 15:12:04 圖像識(shí)別( Image Recognition ),基于深度學(xué)習(xí)和大數(shù)據(jù),利用計(jì)算機(jī)對(duì)圖像進(jìn)行分析和理解,以識(shí)別各種不同模式的目標(biāo)和對(duì)象的技術(shù)。基于深度學(xué)習(xí)技術(shù),可準(zhǔn)確識(shí)別圖像中的視覺(jué)內(nèi)容,提供多種物體、場(chǎng)景和概念標(biāo)來(lái)自:百科
、反動(dòng)、涉黃等內(nèi)容的用戶昵稱 優(yōu)勢(shì) 準(zhǔn)確率高 基于改進(jìn)的深度學(xué)習(xí)算法,檢測(cè)準(zhǔn)確率高 海量詞庫(kù) 內(nèi)置海量詞庫(kù),支持各種匹配規(guī)則 媒資內(nèi)容審核 自動(dòng)識(shí)別媒資中可能存在的涉政、違禁品等信息,避免已發(fā)布的文章存在違規(guī)風(fēng)險(xiǎn) 優(yōu)勢(shì) 快速迭代 持續(xù)快速的迭代文本詞庫(kù),及時(shí)識(shí)別新型不合規(guī)內(nèi)容 準(zhǔn)確率高來(lái)自:百科
換為自然流暢的語(yǔ)音,提供特定領(lǐng)域的 語(yǔ)音合成 。 定制語(yǔ)音識(shí)別 定制語(yǔ)音識(shí)別提供了一句話識(shí)別,錄音文件識(shí)別功能。 一句話識(shí)別:可以實(shí)現(xiàn)1分鐘以內(nèi)音頻到文字的轉(zhuǎn)換。對(duì)于用戶上傳的二進(jìn)制音頻格式數(shù)據(jù),系統(tǒng)經(jīng)過(guò)處理,生成語(yǔ)音對(duì)應(yīng)的文字。 錄音文件識(shí)別:對(duì)于錄制的長(zhǎng)語(yǔ)音進(jìn)行識(shí)別,轉(zhuǎn)寫(xiě)成文字,來(lái)自:百科
互聯(lián)網(wǎng)平臺(tái),助力煤礦實(shí)現(xiàn)減人、增安、提效。通過(guò)新技術(shù),實(shí)現(xiàn)“穿西裝、打領(lǐng)帶、點(diǎn)鼠標(biāo)”采煤的新范式。 中國(guó)一汽集團(tuán) 中國(guó)一汽結(jié)合新一汽、新紅旗的發(fā)展需要,計(jì)劃構(gòu)建統(tǒng)一的混合云作為集團(tuán)數(shù)字化轉(zhuǎn)型的云底座,支持微服務(wù)、容器等高階服務(wù)部署,滿足一汽企業(yè)辦公、數(shù)字化營(yíng)銷(xiāo)、車(chē)聯(lián)網(wǎng)、智慧出行等來(lái)自:專(zhuān)題
視頻標(biāo)簽 (簡(jiǎn)稱VCT),基于深度學(xué)習(xí)對(duì)視頻進(jìn)行場(chǎng)景分類(lèi)、人物識(shí)別、語(yǔ)音識(shí)別、文字識(shí)別等多維度分析,形成層次化的分類(lèi)標(biāo)簽。 功能描述 場(chǎng)景概念識(shí)別 基于對(duì)視頻中的場(chǎng)景信息的分析,輸出豐富而準(zhǔn)確的概念、場(chǎng)景標(biāo)簽 人物識(shí)別 基于對(duì)視頻中的人物信息的分析,輸出準(zhǔn)確的人物標(biāo)簽 視頻 OCR 識(shí)別視頻中出現(xiàn)來(lái)自:百科
索和分類(lèi)、基于場(chǎng)景內(nèi)容或者物體的廣告推薦等功能更加準(zhǔn)確。 圖1 圖像標(biāo)簽 示例圖 名人識(shí)別 利用深度神經(jīng)網(wǎng)絡(luò)模型對(duì)圖片內(nèi)容進(jìn)行檢測(cè),準(zhǔn)確識(shí)別圖像中包含的影視明星及網(wǎng)紅人物。 翻拍識(shí)別 利用深度神經(jīng)網(wǎng)絡(luò)算法判斷條形碼圖片為原始拍攝,還是經(jīng)過(guò)二次翻拍、打印翻拍等手法二次處理的圖片。利用翻來(lái)自:百科
- 探討場(chǎng)景文本識(shí)別中的語(yǔ)言模型:基于深度學(xué)習(xí)的解決思路
- 基于深度學(xué)習(xí)的場(chǎng)景文字檢索
- 基于深度學(xué)習(xí)的油藏?cái)?shù)據(jù)分類(lèi)與識(shí)別
- 基于深度學(xué)習(xí)的性別識(shí)別算法matlab仿真
- 基于深度學(xué)習(xí)的海洋魚(yú)類(lèi)識(shí)別算法matlab仿真
- 基于深度學(xué)習(xí)的鳥(niǎo)類(lèi)識(shí)別系統(tǒng)matlab仿真
- 基于深度學(xué)習(xí)網(wǎng)絡(luò)的鞋子種類(lèi)識(shí)別matlab仿真
- 基于深度學(xué)習(xí)網(wǎng)絡(luò)的手勢(shì)識(shí)別算法matlab仿真
- 基于深度學(xué)習(xí)的YOLO框架的7種交通場(chǎng)景識(shí)別項(xiàng)目系統(tǒng)【附完整源碼+數(shù)據(jù)集】
- 基于深度學(xué)習(xí)網(wǎng)絡(luò)的寶石類(lèi)型識(shí)別算法matlab仿真