- 基于深度學(xué)習(xí)的財(cái)務(wù)預(yù)警模型研究 內(nèi)容精選 換一換
-
來自:百科征形成更抽象的高層代表屬性類別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動(dòng)機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來解釋說明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。 深度學(xué)習(xí)的典型模型:卷積神經(jīng)網(wǎng)絡(luò)模型、深度信任網(wǎng)絡(luò)模型、堆棧自編碼網(wǎng)絡(luò)模型。 深度學(xué)習(xí)的應(yīng)用:計(jì)算機(jī)視覺、語音識(shí)別、自然語言處理等其他領(lǐng)域。來自:百科
- 基于深度學(xué)習(xí)的財(cái)務(wù)預(yù)警模型研究 相關(guān)內(nèi)容
-
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見的問題。 目標(biāo)學(xué)員來自:百科本課程介紹了雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例,讓你對(duì)雙向深度學(xué)習(xí)有初步的認(rèn)知。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員: 1、認(rèn)識(shí)雙向智能。 2、了解深度雙向智能的理論、算法和應(yīng)用示例。 課程大綱 第1章 引言 第2章 雙向智能 第3章 深度雙向智能 華為云 面向未來的智能世界,數(shù)字化來自:百科
- 基于深度學(xué)習(xí)的財(cái)務(wù)預(yù)警模型研究 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來自:百科測(cè)道路上人和車的位置。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 通過實(shí)操最終得到AI成功識(shí)別人車的結(jié)果。 實(shí)驗(yàn)摘要 1.準(zhǔn)備環(huán)境 2.創(chuàng)建 OBS 桶和目錄 3.拷貝數(shù)據(jù)集到OBS桶 4.創(chuàng)建訓(xùn)練作業(yè) 5.模型導(dǎo)入 6.模型部署 7.發(fā)起檢測(cè) 華為云 面向未來的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)字來自:百科OCR 服務(wù)介紹 第2章 OCR服務(wù)使用指導(dǎo) 第3章 財(cái)務(wù)報(bào)銷場(chǎng)景解決方案介紹 第4章 OCR服務(wù)二次開發(fā)案例介紹 第5章 基于ModelArts的OCR模型訓(xùn)練教程 文字識(shí)別 OCR 文字識(shí)別OCR提供在線文字識(shí)別服務(wù),將圖片或掃描件中的文字識(shí)別成可編輯的文本。 OCR文字識(shí)別 支持 證件識(shí)別 、票據(jù)來自:百科語音識(shí)別服務(wù)可以實(shí)現(xiàn)1分鐘以內(nèi)、不超過4MB的音頻到文字的轉(zhuǎn)換。對(duì)于用戶上傳的完整的錄音文件,系統(tǒng)通過處理,生成語音對(duì)應(yīng)文字內(nèi)容。 ASR優(yōu)勢(shì) 效果出眾 使用深度學(xué)習(xí)技術(shù),語音識(shí)別準(zhǔn)確率超過95%,在業(yè)界具有一定的技術(shù)優(yōu)勢(shì)。 穩(wěn)定可靠 成功應(yīng)用于各類場(chǎng)景,基于華為等企業(yè)客戶的長期實(shí)踐,經(jīng)受過復(fù)雜場(chǎng)景考驗(yàn)。來自:百科Health)平臺(tái)是基于華為云AI和大數(shù)據(jù)技術(shù)優(yōu)勢(shì),為基因組分析、藥物研發(fā)和醫(yī)療影像三個(gè)領(lǐng)域提供的專業(yè)AI研發(fā)平臺(tái)。 產(chǎn)品優(yōu)勢(shì) 提供開放的、易于擴(kuò)展的平臺(tái)架構(gòu)。 提供端到端的AI賦能平臺(tái)加速AI的研發(fā)和應(yīng)用。 提供針對(duì)醫(yī)療行業(yè)的AI自動(dòng)建模工具。 提供醫(yī)療領(lǐng)域?qū)I(yè)的預(yù)置資產(chǎn),提升企業(yè)的效率。來自:百科
- 基于深度學(xué)習(xí)的油井異常檢測(cè)與預(yù)警系統(tǒng)
- 基于機(jī)器學(xué)習(xí)的油藏產(chǎn)能預(yù)測(cè)模型研究
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:智能健康監(jiān)測(cè)與預(yù)警
- 基于TensorFlow的深度學(xué)習(xí)模型優(yōu)化策略
- 基于深度學(xué)習(xí)的人類活動(dòng)識(shí)別模型研究:HAR-DeepConvLG的設(shè)計(jì)與應(yīng)用
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:智能環(huán)境監(jiān)測(cè)與預(yù)警
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:智能森林火災(zāi)預(yù)警系統(tǒng)
- 深度學(xué)習(xí)應(yīng)用篇-元學(xué)習(xí)[14]:基于優(yōu)化的元學(xué)習(xí)-MAML模型、LEO模型、Reptile模型
- 推薦系統(tǒng)算法的研究與實(shí)踐:協(xié)同過濾、基于內(nèi)容的推薦和深度學(xué)習(xí)推薦模型
- 基于深度學(xué)習(xí)的端到端通信系統(tǒng)模型