- java 運(yùn)行spark 內(nèi)容精選 換一換
-
MapReduce服務(wù) (MapReduce Service)提供租戶完全可控的企業(yè)級(jí)大數(shù)據(jù)集群云服務(wù),輕松運(yùn)行Hadoop、Spark、HBase、KafKa、Storm等大數(shù)據(jù)組件。 用戶可以獨(dú)立申請(qǐng)和使用托管Hadoop、Spark、HBase和Hive組件,用戶快速在主機(jī)上創(chuàng)建集群,提供海量數(shù)據(jù)的實(shí)時(shí)性要來(lái)自:百科CarbonData將數(shù)據(jù)源集成到Spark生態(tài)系統(tǒng),用戶可使用Spark SQL執(zhí)行數(shù)據(jù)查詢(xún)和分析,也可以使用Spark提供的第三方工具ThriftServer連接到Spark SQL。 CarbonData特性 SQL功能:CarbonData與Spark SQL完全兼容,支持所有可以直接在Spark來(lái)自:百科
- java 運(yùn)行spark 相關(guān)內(nèi)容
-
R集成。后續(xù)還將支持MQTT, OPC, Hadoop,Spark等, BI工具也將無(wú)縫連接。 TDengine的免費(fèi)時(shí)序數(shù)據(jù)零運(yùn)維成本、零學(xué)習(xí)成本 安裝、集群一秒搞定,無(wú)需分庫(kù)分表,實(shí)時(shí)備份。標(biāo)準(zhǔn)SQL,支持JDBC,RESTful,支持Python/Java/C/C++/Go/Node.JS, 與MySQL相似,零學(xué)習(xí)成本。來(lái)自:專(zhuān)題的企業(yè)級(jí)大數(shù)據(jù)集群云服務(wù),可輕松運(yùn)行Hadoop、Spark、HBase、Hue等大數(shù)據(jù)組件,具有企業(yè)級(jí)、易運(yùn)維、高安全和低成本等產(chǎn)品優(yōu)勢(shì)。 華為云MapReduce服務(wù)( MRS )提供可控的企業(yè)級(jí)大數(shù)據(jù)集群云服務(wù),可輕松運(yùn)行Hadoop、Spark、HBase、Hue等大數(shù)據(jù)組件來(lái)自:專(zhuān)題
- java 運(yùn)行spark 更多內(nèi)容
-
群云服務(wù),完全兼容開(kāi)源接口,結(jié)合 華為云計(jì)算 、存儲(chǔ)優(yōu)勢(shì)及大數(shù)據(jù)行業(yè)經(jīng)驗(yàn),為客戶提供高性能、低成本、靈活易用的全棧大數(shù)據(jù)平臺(tái),輕松運(yùn)行Hadoop、Spark、HBase、Kafka、Storm等大數(shù)據(jù)組件,并具備在后續(xù)根據(jù)業(yè)務(wù)需要進(jìn)行定制開(kāi)發(fā)的能力,幫助企業(yè)快速構(gòu)建海量數(shù)據(jù)信息處理來(lái)自:專(zhuān)題
HBase支持帶索引的數(shù)據(jù)存儲(chǔ),適合高性能基于索引查詢(xún)的場(chǎng)景。 數(shù)據(jù)計(jì)算 MRS提供多種主流計(jì)算引擎:MapReduce(批處理)、Tez(DAG模型)、Spark(內(nèi)存計(jì)算)、SparkStreaming(微批流計(jì)算)、Storm(流計(jì)算)、Flink(流計(jì)算),滿足多種大數(shù)據(jù)應(yīng)用場(chǎng)景,將數(shù)據(jù)進(jìn)行結(jié)構(gòu)和邏輯的轉(zhuǎn)換,轉(zhuǎn)化成滿足業(yè)務(wù)目標(biāo)的數(shù)據(jù)模型。來(lái)自:百科
本教程介紹如何在數(shù)據(jù)開(kāi)發(fā)模塊上通過(guò)DWS SQL節(jié)點(diǎn)進(jìn)行作業(yè)開(kāi)發(fā)。 文檔鏈接 開(kāi)發(fā)一個(gè) DLI Spark作業(yè) 本教程通過(guò)一個(gè)例子演示如何在數(shù)據(jù)開(kāi)發(fā)模塊中提交一個(gè)Spark作業(yè)。 本教程通過(guò)一個(gè)例子演示如何在數(shù)據(jù)開(kāi)發(fā)模塊中提交一個(gè)Spark作業(yè)。 文檔鏈接 開(kāi)發(fā)一個(gè)MRS Flink作業(yè) 本教程介紹如何在數(shù)據(jù)開(kāi)發(fā)模塊上進(jìn)行MRS來(lái)自:專(zhuān)題
華為云計(jì)算 云知識(shí) 業(yè)財(cái)一體,精細(xì)管控丨華為云SparkPack助力成長(zhǎng)型企業(yè)數(shù)字化轉(zhuǎn)型 業(yè)財(cái)一體,精細(xì)管控丨華為云SparkPack助力成長(zhǎng)型企業(yè)數(shù)字化轉(zhuǎn)型 時(shí)間:2023-11-06 10:51:44 在當(dāng)今的數(shù)字化時(shí)代,成長(zhǎng)型企業(yè)面臨著激烈的市場(chǎng)競(jìng)爭(zhēng)和日益復(fù)雜的業(yè)務(wù)需求。為來(lái)自:百科
全面托管的調(diào)度,支持按時(shí)間、事件觸發(fā)的任務(wù)觸發(fā)機(jī)制,支持分鐘、小時(shí)、天、周和月等多種調(diào)度周期。 可視化的任務(wù)運(yùn)維中心,監(jiān)控所有任務(wù)的運(yùn)行,支持配置各類(lèi)報(bào)警通知,便于責(zé)任人實(shí)時(shí)獲取任務(wù)的情況,保證業(yè)務(wù)正常運(yùn)行。 全方位的安全保障 統(tǒng)一的安全認(rèn)證,租戶隔離,數(shù)據(jù)的分級(jí)分類(lèi)管理,數(shù)據(jù)的全生命周期管理,保證數(shù)據(jù)的隱私合規(guī)、可審計(jì)、可回溯。來(lái)自:百科
華為企業(yè)人工智能高級(jí)開(kāi)發(fā)者培訓(xùn):培訓(xùn)內(nèi)容 目標(biāo)讀者 目標(biāo)讀者 目標(biāo)讀者 應(yīng)用開(kāi)發(fā)簡(jiǎn)介:Spark簡(jiǎn)介 應(yīng)用開(kāi)發(fā)簡(jiǎn)介:Spark簡(jiǎn)介 應(yīng)用開(kāi)發(fā)簡(jiǎn)介:Spark簡(jiǎn)介 應(yīng)用開(kāi)發(fā)簡(jiǎn)介:Spark簡(jiǎn)介 職業(yè)認(rèn)證考試的學(xué)習(xí)方法 Spark應(yīng)用開(kāi)發(fā)簡(jiǎn)介:Spark簡(jiǎn)介 彈性伸縮概述:組件介紹 邊緣節(jié)點(diǎn)注冊(cè)來(lái)自:百科
- spark 的運(yùn)行架構(gòu)
- Spark運(yùn)行模式概述
- Spark standalone運(yùn)行模式
- Spark SQL運(yùn)行流程解析
- 04Spark 運(yùn)行架構(gòu)
- 如何在Spark上運(yùn)行apache beam
- 獲取spark 或hadoop運(yùn)行日志
- 查看在運(yùn)行的spark任務(wù)
- 【Spark開(kāi)發(fā)環(huán)境搭建流程】Windows版+運(yùn)行Spark用例
- 《Spark數(shù)據(jù)分析:基于Python語(yǔ)言 》 —2.1.4 基于Mesos運(yùn)行Spark