- 機(jī)器學(xué)習(xí)分類 內(nèi)容精選 換一換
-
。 華為機(jī)器視覺通過多年的技術(shù)積累與深刻的行業(yè)洞察,結(jié)合智慧地產(chǎn)園區(qū)建設(shè)的實(shí)踐經(jīng)驗(yàn),提出地產(chǎn)視覺智能體的解決方案,利用5G、AI和機(jī)器視覺三種技術(shù)相互促進(jìn)、相互激發(fā),打造端邊云網(wǎng)協(xié)同的一體化智能系統(tǒng),加速地產(chǎn)智慧園區(qū)的建設(shè),提升園區(qū)管理效率,方便居民的日常生活。 華為機(jī)器視覺解決來自:云商店本課程主要內(nèi)容包括:自然語言處理技術(shù)原理、實(shí)戰(zhàn):構(gòu)建專屬智能問答機(jī)器人。 課程目標(biāo) 通過本課程的學(xué)習(xí)使學(xué)員掌握深度學(xué)習(xí)平臺(tái)應(yīng)用及入門深度學(xué)習(xí)。 課程大綱 第1節(jié) 導(dǎo)讀&往期內(nèi)容回顧 第2節(jié) 自然語言處理概述 第3節(jié) NLP技術(shù)及應(yīng)用介紹 第4節(jié) 文本語義分析演示 第5節(jié) 對(duì)話機(jī)器人演示 第6節(jié) 課程總結(jié) 華為云來自:百科
- 機(jī)器學(xué)習(xí)分類 相關(guān)內(nèi)容
-
是面向開發(fā)者的一站式 AI 平臺(tái),為機(jī)器學(xué)習(xí)與深度學(xué)習(xí)提供海量數(shù)據(jù)預(yù)處理及交互式智能標(biāo)注、大規(guī)模分布式訓(xùn)練、自動(dòng)化模型生成,及端-邊-云模型按需部署能力,幫助用戶快速創(chuàng)建和部署模型,管理全周期 AI 工作流。 ModelArts 是面向開發(fā)者的一站式 AI 平臺(tái),為機(jī)器學(xué)習(xí)與深度學(xué)習(xí)提供海量數(shù)據(jù)預(yù)處來自:專題通過本課程的學(xué)習(xí),使學(xué)員:了解云網(wǎng)絡(luò)的優(yōu)勢(shì)、使用場(chǎng)景,熟練使用云網(wǎng)絡(luò)的各類基礎(chǔ)服務(wù)。 立即學(xué)習(xí) 對(duì)象存儲(chǔ)服務(wù):便捷管理存儲(chǔ)資源 通過本課程學(xué)習(xí),用戶將對(duì) OBS 對(duì)象存儲(chǔ)服務(wù)形成整體理解,什么是對(duì)象存儲(chǔ)服務(wù)、它有什么特點(diǎn),如何在正確場(chǎng)景下合理使用對(duì)象存儲(chǔ)服務(wù)等等,快來加入學(xué)習(xí)吧。 課程目標(biāo)來自:專題
- 機(jī)器學(xué)習(xí)分類 更多內(nèi)容
-
通過本課程的學(xué)習(xí),使學(xué)員:了解云網(wǎng)絡(luò)的優(yōu)勢(shì)、使用場(chǎng)景,熟練使用云網(wǎng)絡(luò)的各類基礎(chǔ)服務(wù)。 立即學(xué)習(xí) 對(duì)象存儲(chǔ)服務(wù):便捷管理存儲(chǔ)資源 通過本課程學(xué)習(xí),用戶將對(duì)OBS對(duì)象存儲(chǔ)服務(wù)形成整體理解,什么是對(duì)象存儲(chǔ)服務(wù)、它有什么特點(diǎn),如何在正確場(chǎng)景下合理使用對(duì)象存儲(chǔ)服務(wù)等等,快來加入學(xué)習(xí)吧。 課程目標(biāo)來自:專題
華為云計(jì)算 云知識(shí) cssnano文檔手冊(cè)學(xué)習(xí)與基本介紹 cssnano文檔手冊(cè)學(xué)習(xí)與基本介紹 時(shí)間:2021-07-09 11:15:42 cssnano 將你的 CSS 文件做多方面的的優(yōu)化,以確保最終生成的文件對(duì)生產(chǎn)環(huán)境來說體積是最小的。cssnano 是基于PostCSS來自:百科
反映了真實(shí)世界的狀況。數(shù)據(jù)集作為深度學(xué)習(xí)和機(jī)器學(xué)習(xí)的輸入,對(duì)AI開發(fā)有至關(guān)重要的意義。 ModelArts 數(shù)據(jù)管理 提供了一套高效便捷的管理和標(biāo)注數(shù)據(jù)集框架。不僅支持圖片、文本、語音、視頻等多種數(shù)據(jù)類型,涵蓋圖像分類、目標(biāo)檢測(cè)、音頻分割、文本分類等多個(gè)標(biāo)注場(chǎng)景,可適用于各種AI項(xiàng)目來自:百科
GaussDB 學(xué)習(xí) GaussDB學(xué)習(xí) 云數(shù)據(jù)庫 GaussDB,華為自主創(chuàng)新研發(fā)的分布式關(guān)系型數(shù)據(jù)庫,具有高性能、高可用、高安全、低成本的特點(diǎn),企業(yè)核心數(shù)據(jù)上云信賴之選。如何快速學(xué)習(xí)和了解GaussDB呢? 云數(shù)據(jù)庫GaussDB,華為自主創(chuàng)新研發(fā)的分布式關(guān)系型數(shù)據(jù)庫,具有高性能來自:專題
AI開發(fā)痛點(diǎn)分析 第3節(jié) ModelArts介紹 第4節(jié) 圖像分類Demo演示 第5節(jié) 自動(dòng)學(xué)習(xí)Demo演示 第6節(jié) 課程總結(jié) AI開發(fā)平臺(tái) ModelArts ModelArts是面向開發(fā)者的一站式AI開發(fā)平臺(tái),為機(jī)器學(xué)習(xí)與深度學(xué)習(xí)提供海量數(shù)據(jù)預(yù)處理及半自動(dòng)化標(biāo)注、大規(guī)模分布式Train來自:百科
- 機(jī)器學(xué)習(xí)分類
- 收藏 | 機(jī)器學(xué)習(xí)分類算法
- 《Spark機(jī)器學(xué)習(xí)進(jìn)階實(shí)戰(zhàn)》——1.3 機(jī)器學(xué)習(xí)分類
- 《Python數(shù)據(jù)挖掘與機(jī)器學(xué)習(xí)實(shí)戰(zhàn)》—1.3 機(jī)器學(xué)習(xí)分類
- 機(jī)器學(xué)習(xí)(五):機(jī)器學(xué)習(xí)算法分類
- 機(jī)器學(xué)習(xí)算法分類
- 學(xué)習(xí)筆記|機(jī)器學(xué)習(xí)的分類
- 機(jī)器學(xué)習(xí)案例(十):新聞分類
- 【進(jìn)階版】 機(jī)器學(xué)習(xí)分類算法之XGBoost(集成學(xué)習(xí)算法)、LightGBM(梯度提升框架)(13)
- 【萬字詳解·附代碼】機(jī)器學(xué)習(xí)分類算法之K近鄰(KNN)