- 數(shù)據(jù)數(shù)據(jù)分析 內(nèi)容精選 換一換
-
運(yùn)營更高效、居民生活更便捷。 智能抄表大數(shù)據(jù)分析提升運(yùn)營效率應(yīng)用場景 深入洞察表具狀態(tài)和用戶消費(fèi)數(shù)據(jù),實(shí)現(xiàn)以大數(shù)據(jù)為核心的精細(xì)化運(yùn)營 ——端到端大數(shù)據(jù)和AI能力 從數(shù)據(jù)接入集成到分析建模展現(xiàn)的全流程大數(shù)據(jù)與人工智能服務(wù),幫助客戶通過抄表數(shù)據(jù)實(shí)現(xiàn)用戶消費(fèi)行為分析、管網(wǎng)漏損監(jiān)測、分區(qū)壓力調(diào)節(jié)等業(yè)務(wù)洞察。來自:百科來自:百科
- 數(shù)據(jù)數(shù)據(jù)分析 相關(guān)內(nèi)容
-
華為云計(jì)算 云知識(shí) 華為云物聯(lián)網(wǎng)數(shù)據(jù)分析架構(gòu)一覽 華為云物聯(lián)網(wǎng)數(shù)據(jù)分析架構(gòu)一覽 時(shí)間:2021-03-12 15:05:56 物聯(lián)網(wǎng) 大數(shù)據(jù)分析 云計(jì)算 華為云物聯(lián)網(wǎng)數(shù)據(jù)分析從物聯(lián)網(wǎng)應(yīng)用場景出發(fā),提供行業(yè)大數(shù)據(jù)分析最佳實(shí)踐,降低企業(yè)物聯(lián)網(wǎng)數(shù)據(jù)開發(fā)門檻。 文中課程 ????????來自:百科捕。時(shí)序數(shù)據(jù)的分析一般依賴于時(shí)序數(shù)據(jù)庫,數(shù)據(jù)保存至?xí)r序數(shù)據(jù)庫進(jìn)行分類與排序,再由其他應(yīng)用或服務(wù)從數(shù)據(jù)庫中獲取進(jìn)行進(jìn)一步處理。 離線數(shù)據(jù) 還有一些數(shù)據(jù),對于實(shí)時(shí)性和有序性的要求都沒那么強(qiáng),分析時(shí)數(shù)據(jù)已經(jīng)固化,我們稱之為離線數(shù)據(jù)。典型的離線數(shù)據(jù)包括產(chǎn)品銷量數(shù)據(jù)、景點(diǎn)游客數(shù)據(jù)等,應(yīng)用于來自:百科
- 數(shù)據(jù)數(shù)據(jù)分析 更多內(nèi)容
-
GaussDB (DWS)應(yīng)用場景-實(shí)時(shí)數(shù)據(jù)分析 GaussDB(DWS)應(yīng)用場景-實(shí)時(shí)數(shù)據(jù)分析 時(shí)間:2021-06-17 14:58:31 數(shù)據(jù)庫 GaussDB(DWS)在實(shí)時(shí)數(shù)據(jù)分析的應(yīng)用如下圖所示。分析過程有如下的特點(diǎn): 流式數(shù)據(jù)實(shí)時(shí)入庫:IoT、互聯(lián)網(wǎng)等數(shù)據(jù)經(jīng)過流計(jì)算及AI服務(wù)處理后,可實(shí)時(shí)寫入GaussDB(DWS)。來自:百科場景提供數(shù)據(jù)采集、數(shù)據(jù)存儲(chǔ)、數(shù)據(jù)處理和應(yīng)用接口對接等底層工作的支撐,支持工業(yè)領(lǐng)域大規(guī)模數(shù)據(jù)處理的物聯(lián)網(wǎng)解決方案。 智物聯(lián)Mixlinker工業(yè)IOT平臺(tái)解決方案是為工業(yè)垂直領(lǐng)域和不同場景提供數(shù)據(jù)采集、數(shù)據(jù)存儲(chǔ)、數(shù)據(jù)處理和應(yīng)用接口對接等底層工作的支撐,支持工業(yè)領(lǐng)域大規(guī)模數(shù)據(jù)處理的物聯(lián)網(wǎng)解決方案。來自:專題探索Serverless數(shù)據(jù)湖:無需大數(shù)據(jù)背景,會(huì)SQL就會(huì)大數(shù)據(jù)分析 探索Serverless數(shù)據(jù)湖:無需大數(shù)據(jù)背景,會(huì)SQL就會(huì)大數(shù)據(jù)分析 時(shí)間:2021-04-27 15:04:16 內(nèi)容簡介: 隨著大數(shù)據(jù)&AI技術(shù)在企業(yè)商用場景的廣泛應(yīng)用,統(tǒng)一數(shù)據(jù)平臺(tái)已經(jīng)成為企業(yè)數(shù)據(jù)創(chuàng)新的基礎(chǔ)設(shè)施來自:百科合查詢。 按數(shù)據(jù)時(shí)效性分層處理,獲得綜合處理效率最大化 高效的數(shù)據(jù)清洗,為數(shù)據(jù)分析輸入高質(zhì)量的數(shù)據(jù) 相比將設(shè)備數(shù)據(jù)轉(zhuǎn)發(fā)至通用數(shù)據(jù)分析服務(wù)進(jìn)行分析的方案,IoT數(shù)據(jù)分析服務(wù)是專為物聯(lián)網(wǎng)場景設(shè)計(jì)的。 IoT數(shù)據(jù)分析服務(wù)支持設(shè)備接入管理服務(wù)和多種第三方服務(wù)作為數(shù)據(jù)源,將數(shù)據(jù)集成、歸檔、來自:百科增強(qiáng)分析型敏捷BI平臺(tái) 統(tǒng)一數(shù)據(jù)接入 這款商品能夠?qū)崿F(xiàn)多源數(shù)據(jù)的統(tǒng)一接入,無論是異構(gòu)數(shù)據(jù)還是跨系統(tǒng)數(shù)據(jù),都可以集中管理,大大提高了數(shù)據(jù)處理的效率和便捷性。 這款商品能夠?qū)崿F(xiàn)多源數(shù)據(jù)的統(tǒng)一接入,無論是異構(gòu)數(shù)據(jù)還是跨系統(tǒng)數(shù)據(jù),都可以集中管理,大大提高了數(shù)據(jù)處理的效率和便捷性。 增強(qiáng)分析型敏捷BI平臺(tái)來自:專題、高安全的能力。 數(shù)據(jù)采集 數(shù)據(jù)采集層提供了數(shù)據(jù)接入到 MRS 集群的能力,包括Flume(數(shù)據(jù)采集)、Loader(關(guān)系型數(shù)據(jù)導(dǎo)入)、Kafka(高可靠消息隊(duì)列),支持各種數(shù)據(jù)源導(dǎo)入數(shù)據(jù)到大數(shù)據(jù)集群中。使用云數(shù)據(jù)遷移云服務(wù)也可以將外部數(shù)據(jù)導(dǎo)入至MRS集群中。 數(shù)據(jù)存儲(chǔ) MRS支持結(jié)來自:專題工具,經(jīng)濟(jì)高效地挖掘和分析海量數(shù)據(jù)。 報(bào)名學(xué)習(xí) 最新文章 OLTP和OLAP的比較 數(shù)據(jù)倉庫DWS應(yīng)用案例 數(shù)據(jù)處理耗時(shí)從天級(jí)縮短至小時(shí)級(jí) 數(shù)據(jù)倉庫DWS助力某高校打破數(shù)據(jù)孤島實(shí)現(xiàn)數(shù)據(jù)綜合分析案例 數(shù)據(jù)倉庫DWS助力終端消費(fèi)云冷熱數(shù)據(jù)關(guān)聯(lián)分析 數(shù)據(jù)倉庫DWS動(dòng)手實(shí)踐來自:百科華為云計(jì)算 云知識(shí) 物聯(lián)網(wǎng)數(shù)據(jù)分析提供高性能的物聯(lián)網(wǎng)離線處理能力 物聯(lián)網(wǎng)數(shù)據(jù)分析提供高性能的物聯(lián)網(wǎng)離線處理能力 時(shí)間:2021-03-12 19:45:45 物聯(lián)網(wǎng) 大數(shù)據(jù)分析 云計(jì)算 物聯(lián)網(wǎng)數(shù)據(jù)分析提供低成本/高性能的物聯(lián)網(wǎng)離線處理能力,關(guān)鍵競爭力包含: 1. 與華為云IoT相關(guān)服務(wù)深度預(yù)集成,降低開發(fā)門檻;來自:百科貫穿著數(shù)據(jù)分析的整個(gè)過程: 數(shù)據(jù)接入階段:數(shù)據(jù)質(zhì)量參差不齊、且面臨多種異構(gòu)數(shù)據(jù)源接入 數(shù)據(jù)準(zhǔn)備階段:缺少統(tǒng)一數(shù)據(jù)模型,需要進(jìn)行大量的數(shù)據(jù)抽取、轉(zhuǎn)換等處理 數(shù)據(jù)存儲(chǔ)階段:海量數(shù)據(jù)查詢效率低下,數(shù)據(jù)多份存儲(chǔ)、數(shù)據(jù)管理成本高昂 數(shù)據(jù)分析階段:不同類型數(shù)據(jù)分析數(shù)據(jù)源不同,形成數(shù)據(jù)孤島、存來自:百科圖片處理平臺(tái)——數(shù)據(jù)工坊 DWR 圖片處理平臺(tái)——數(shù)據(jù)工坊 DWR 數(shù)據(jù)工坊DWR是開放的近數(shù)據(jù)處理服務(wù)。支持易用的工作流編排和開放生態(tài)的數(shù)據(jù)處理算子市場,能夠?qū)崿F(xiàn)靈活的數(shù)據(jù)及時(shí)處理。 數(shù)據(jù)工坊DWR是開放的近數(shù)據(jù)處理服務(wù)。支持易用的工作流編排和開放生態(tài)的數(shù)據(jù)處理算子市場,能夠?qū)崿F(xiàn)靈活的數(shù)據(jù)及時(shí)處理。來自:專題什么是IoT數(shù)據(jù)分析?它的優(yōu)勢是什么?五分鐘帶你入門! 什么是IoT數(shù)據(jù)分析?它的優(yōu)勢是什么?五分鐘帶你入門! 時(shí)間:2022-11-08 10:10:56 物聯(lián)網(wǎng) 一、什么是物聯(lián)網(wǎng)數(shù)據(jù)? 物聯(lián)網(wǎng)數(shù)據(jù)顧名思義是由各種物聯(lián)網(wǎng)設(shè)備、傳感器產(chǎn)生的數(shù)據(jù)。與其他的數(shù)據(jù)相比,物聯(lián)網(wǎng)數(shù)據(jù)具有“大、小、高、底”四個(gè)特點(diǎn):來自:百科數(shù)據(jù)準(zhǔn)備階段:缺少統(tǒng)一數(shù)據(jù)模型,需要進(jìn)行大量的數(shù)據(jù)抽取、轉(zhuǎn)換等處理 數(shù)據(jù)存儲(chǔ)階段:海量數(shù)據(jù)查詢效率低下,數(shù)據(jù)多份存儲(chǔ)、數(shù)據(jù)管理成本高昂 數(shù)據(jù)分析階段:不同類型數(shù)據(jù)分析數(shù)據(jù)源不同,形成數(shù)據(jù)孤島、存在大量數(shù)據(jù)搬遷;并且數(shù)據(jù)分析門檻高,缺少簡單易用的數(shù)據(jù)分析工具 數(shù)據(jù)可視化階段:缺少來自:百科
- 一零一九、崗位數(shù)據(jù)分析(Spark)
- 數(shù)據(jù)分析入門:從數(shù)據(jù)探索到洞察真相
- 【數(shù)據(jù)分析】走進(jìn)數(shù)據(jù)分析 4 讀取數(shù)據(jù)
- 寫給數(shù)據(jù)分析師的數(shù)據(jù)倉庫知識(shí)(2)
- 基于新浪微博海量用戶行為數(shù)據(jù)、博文數(shù)據(jù)數(shù)據(jù)分析:包括綜合指數(shù)、移動(dòng)指數(shù)、PC指數(shù)三個(gè)指數(shù)
- 【數(shù)據(jù)分析】走進(jìn)數(shù)據(jù)分析 5 指標(biāo)介紹
- 數(shù)據(jù)分析實(shí)戰(zhàn):豆瓣數(shù)據(jù)分析可視化
- 【數(shù)據(jù)分析應(yīng)用】-財(cái)務(wù)數(shù)據(jù)分析指標(biāo)講解
- 【數(shù)據(jù)分析實(shí)例】全球游戲市場概況數(shù)據(jù)分析
- 【數(shù)據(jù)分析實(shí)例】6000 條倒閉企業(yè)數(shù)據(jù)分析