- 大數(shù)據(jù)行業(yè)分析 內(nèi)容精選 換一換
-
【業(yè)務(wù)遷移難】:現(xiàn)有數(shù)據(jù)庫(kù)種類(lèi)多,業(yè)務(wù)遷移工作量大。 解決方案: 以數(shù)據(jù)倉(cāng)庫(kù)服務(wù)DWS為核心,構(gòu)建統(tǒng)一免運(yùn)維、高可靠的數(shù)據(jù)存儲(chǔ)和分析平臺(tái); 利用DWS匯聚各業(yè)務(wù)數(shù)據(jù)庫(kù)數(shù)據(jù),實(shí)現(xiàn)統(tǒng)一數(shù)據(jù)存儲(chǔ)和分析; 結(jié)合BI工具,實(shí)現(xiàn)數(shù)據(jù)可視化。 客戶(hù)價(jià)值: 數(shù)據(jù)統(tǒng)一存儲(chǔ),統(tǒng)一分析,支持客戶(hù)實(shí)現(xiàn)綜合數(shù)據(jù)分析挖掘;來(lái)自:百科分必要。本課程主要介紹如何搭建一個(gè)可視化大屏,為企業(yè)提供精準(zhǔn)、高效的支持。 基于流計(jì)算的可視化大屏,為企業(yè)、政府帶來(lái)全新的視覺(jué)體驗(yàn) 適合人群:面向?qū)?shí)時(shí)流計(jì)算和可視化感興趣的從業(yè)人員,社會(huì)大眾和高校師生 培訓(xùn)方案:結(jié)合華為云服務(wù)搭建基于流計(jì)算的可視化平臺(tái) 技術(shù)能力:了解流計(jì)算的關(guān)來(lái)自:專(zhuān)題
- 大數(shù)據(jù)行業(yè)分析 相關(guān)內(nèi)容
-
來(lái)自:百科初識(shí)華為云IoT數(shù)據(jù)分析 初識(shí)華為云IoT數(shù)據(jù)分析 時(shí)間:2020-12-10 16:53:19 物聯(lián)網(wǎng)數(shù)據(jù)分析(IoT Analytics)基于物聯(lián)網(wǎng)資產(chǎn)模型,整合物聯(lián)網(wǎng)數(shù)據(jù)集成、清洗、存儲(chǔ)、分析、可視化,為開(kāi)發(fā)者提供一站式服務(wù),降低開(kāi)發(fā)門(mén)檻,縮短開(kāi)發(fā)周期,快速實(shí)現(xiàn)物聯(lián)網(wǎng)數(shù)據(jù)價(jià)值變現(xiàn)。來(lái)自:百科
- 大數(shù)據(jù)行業(yè)分析 更多內(nèi)容
-
云知識(shí) 數(shù)據(jù)庫(kù)需求分析的步驟和要求 數(shù)據(jù)庫(kù)需求分析的步驟和要求 時(shí)間:2021-06-02 09:54:57 數(shù)據(jù)庫(kù) 在做數(shù)據(jù)庫(kù)設(shè)計(jì)的需求分析時(shí),在系統(tǒng)調(diào)研、收集和分析需求,確定系統(tǒng)開(kāi)發(fā)范圍的階段,要求: 1. 信息調(diào)研 信息調(diào)研目標(biāo)是明確所設(shè)計(jì)的數(shù)據(jù)庫(kù)中要存儲(chǔ)哪些數(shù)據(jù),哪些數(shù)據(jù)來(lái)自:百科華為云計(jì)算 云知識(shí) 數(shù)據(jù)庫(kù)需求分析階段的數(shù)據(jù)字典 數(shù)據(jù)庫(kù)需求分析階段的數(shù)據(jù)字典 時(shí)間:2021-06-02 10:01:20 數(shù)據(jù)庫(kù) 在數(shù)據(jù)庫(kù)設(shè)計(jì)的需求分析階段,要求輸出數(shù)據(jù)字典。這里的數(shù)據(jù)字典是進(jìn)行需求分析階段,數(shù)據(jù)收集和數(shù)據(jù)分析所獲得的成果。而不是某個(gè)數(shù)據(jù)庫(kù)產(chǎn)品中的DD(Data來(lái)自:百科決方案。 海量數(shù)據(jù)存儲(chǔ)分析的典型場(chǎng)景:PB級(jí)的數(shù)據(jù)存儲(chǔ),批量數(shù)據(jù)分析,毫秒級(jí)的數(shù)據(jù)詳單查詢(xún)等 歷史數(shù)據(jù)明細(xì)查詢(xún)的典型場(chǎng)景:流水審計(jì),設(shè)備歷史能耗分析,軌跡回放,車(chē)輛駕駛行為分析,精細(xì)化監(jiān)控等 海量行為日志分析的典型場(chǎng)景:學(xué)習(xí)習(xí)慣分析,運(yùn)營(yíng)日志分析,系統(tǒng)操作日志分析查詢(xún)等 公共事務(wù)來(lái)自:專(zhuān)題GaussDB (DWS)應(yīng)用場(chǎng)景-大數(shù)據(jù)融合分析 GaussDB(DWS)應(yīng)用場(chǎng)景-大數(shù)據(jù)融合分析 時(shí)間:2021-06-17 12:52:17 數(shù)據(jù)庫(kù) GaussDB(DWS)在大數(shù)據(jù)融合分析的應(yīng)用如下圖所示。分析過(guò)程有如下的特點(diǎn): 統(tǒng)一分析入口:以GaussDB(DWS)的S來(lái)自:百科數(shù)據(jù)庫(kù)有哪些_開(kāi)源數(shù)據(jù)庫(kù)_數(shù)據(jù)庫(kù)應(yīng)用系統(tǒng)_數(shù)據(jù)庫(kù)的應(yīng)用 連接GaussDB數(shù)據(jù)庫(kù)_華為高斯數(shù)據(jù)庫(kù)_新建數(shù)據(jù)庫(kù)_語(yǔ)法 GaussDB自建數(shù)據(jù)庫(kù)_GaussDB數(shù)據(jù)庫(kù)_華為高斯自建數(shù)據(jù)庫(kù) 免費(fèi)云數(shù)據(jù)庫(kù)_免費(fèi)mysql數(shù)據(jù)庫(kù)_rds數(shù)據(jù)庫(kù) GaussDB數(shù)據(jù)庫(kù)案例_GaussDB數(shù)據(jù)庫(kù)的優(yōu)勢(shì)_華為高斯數(shù)據(jù)庫(kù)_新建高斯數(shù)據(jù)庫(kù)來(lái)自:專(zhuān)題華為云計(jì)算 云知識(shí) 六大業(yè)務(wù)場(chǎng)景,華為云 CDN 為行業(yè)智能“加速度” 六大業(yè)務(wù)場(chǎng)景,華為云CDN為行業(yè)智能“加速度” 時(shí)間:2022-04-01 16:29:47 【最新活動(dòng)】 相較于移動(dòng)互聯(lián)網(wǎng)剛起步的階段,互聯(lián)網(wǎng)應(yīng)用形態(tài)發(fā)生了巨大的改變,從在線視頻平臺(tái)到直播短視頻,為了滿(mǎn)足差異環(huán)來(lái)自:百科華為云計(jì)算 云知識(shí) 數(shù)據(jù)庫(kù)需求分析階段的數(shù)據(jù)字典包含什么 數(shù)據(jù)庫(kù)需求分析階段的數(shù)據(jù)字典包含什么 時(shí)間:2021-06-02 10:03:51 數(shù)據(jù)庫(kù) 數(shù)據(jù)字典是對(duì)數(shù)據(jù)的描述,不是數(shù)據(jù)本身。包括: 1. 數(shù)據(jù)項(xiàng) 數(shù)據(jù)項(xiàng)名稱(chēng),含義,數(shù)據(jù)類(lèi)型,長(zhǎng)度,取值范圍,單位,與其他數(shù)據(jù)項(xiàng)邏輯關(guān)系等。 是邏輯設(shè)計(jì)階段模型優(yōu)化的依據(jù)。來(lái)自:百科華為云計(jì)算 云知識(shí) 數(shù)據(jù)庫(kù)設(shè)計(jì)需求分析階段的任務(wù) 數(shù)據(jù)庫(kù)設(shè)計(jì)需求分析階段的任務(wù) 時(shí)間:2021-06-02 09:52:46 數(shù)據(jù)庫(kù) 數(shù)據(jù)庫(kù)設(shè)計(jì)需求分析階段的任務(wù),包括: 1. 對(duì)用戶(hù)業(yè)務(wù)行為和流程進(jìn)行調(diào)查,了解用戶(hù)對(duì)新系統(tǒng)的期望和目標(biāo),了解目前現(xiàn)存系統(tǒng)的主要問(wèn)題; 2. 系統(tǒng)調(diào)研、收集和分析需求,確定系統(tǒng)開(kāi)發(fā)范圍;來(lái)自:百科些設(shè)備,如何對(duì)源源不斷采集到的數(shù)據(jù)進(jìn)行合適的處理等等。而這篇博客我主要想分享下個(gè)人認(rèn)為物聯(lián)網(wǎng)的數(shù)據(jù)分析可能應(yīng)該是什么樣的。 我把物聯(lián)網(wǎng)數(shù)據(jù)的特點(diǎn)和挑戰(zhàn)歸納如下。我覺(jué)得最主要的4個(gè)特點(diǎn)是“大”,“小”,“高”,“低”。 “大”即物聯(lián)網(wǎng)數(shù)據(jù)體量大,我們經(jīng)常聽(tīng)到的一個(gè)經(jīng)典的案例即GE發(fā)來(lái)自:百科、居民生活更便捷。 智能抄表大數(shù)據(jù)分析提升運(yùn)營(yíng)效率應(yīng)用場(chǎng)景 深入洞察表具狀態(tài)和用戶(hù)消費(fèi)數(shù)據(jù),實(shí)現(xiàn)以大數(shù)據(jù)為核心的精細(xì)化運(yùn)營(yíng) ——端到端大數(shù)據(jù)和AI能力 從數(shù)據(jù)接入集成到分析建模展現(xiàn)的全流程大數(shù)據(jù)與人工智能服務(wù),幫助客戶(hù)通過(guò)抄表數(shù)據(jù)實(shí)現(xiàn)用戶(hù)消費(fèi)行為分析、管網(wǎng)漏損監(jiān)測(cè)、分區(qū)壓力調(diào)節(jié)等業(yè)務(wù)洞察。來(lái)自:百科云知識(shí) 使用華為數(shù)據(jù)湖服務(wù)實(shí)現(xiàn)企業(yè)安全數(shù)據(jù)智能分析與挖掘 使用華為數(shù)據(jù)湖服務(wù)實(shí)現(xiàn)企業(yè)安全數(shù)據(jù)智能分析與挖掘 時(shí)間:2020-11-24 14:45:13 本視頻主要為您介紹使用華為數(shù)據(jù)湖服務(wù)實(shí)現(xiàn)企業(yè)安全數(shù)據(jù)智能分析與挖掘的操作教程指導(dǎo)。 步驟: 建立數(shù)據(jù)連接-數(shù)據(jù)接入-數(shù)據(jù)開(kāi)發(fā)-作業(yè)監(jiān)控來(lái)自:百科同主辦,以”數(shù)聚粵港澳,智匯大灣區(qū)"為主題,面向中國(guó)大陸和中國(guó)港澳地區(qū)高等院校、專(zhuān)業(yè)研究機(jī)構(gòu)、數(shù)據(jù)分析公司、開(kāi)發(fā)者等專(zhuān)業(yè)對(duì)象舉辦的大型數(shù)據(jù)創(chuàng)新類(lèi)競(jìng)賽。 【賽事簡(jiǎn)介】 “華為云杯”2019 深圳開(kāi)放數(shù)據(jù)應(yīng)用創(chuàng)新大賽是由深圳市政務(wù)服務(wù)數(shù)據(jù)管理局聯(lián)合深圳市坪山區(qū)人民政府與深圳市前海管理局共同主辦來(lái)自:百科
- 數(shù)據(jù)分析八大常用分析模型
- 【業(yè)務(wù)數(shù)據(jù)分析】——十大常用數(shù)據(jù)分析方法
- 快速打造BI大屏 激活各行業(yè)數(shù)據(jù)價(jià)值
- Python實(shí)戰(zhàn)項(xiàng)目——物流行業(yè)數(shù)據(jù)分析(二)
- 北京,天津,河北省UI相關(guān)行業(yè)數(shù)據(jù)分析
- 淺談如何處理大語(yǔ)言模型訓(xùn)練數(shù)據(jù)之二數(shù)據(jù)影響分析
- 整車(chē)行業(yè)MES應(yīng)用案例分析
- Python 數(shù)據(jù)分析實(shí)戰(zhàn):大語(yǔ)言模型在企業(yè)中的應(yīng)用與發(fā)展分析
- 人工智能在石油煉化行業(yè)中的過(guò)程數(shù)據(jù)挖掘與分析
- 行業(yè)解析-物流行業(yè)需要堡壘機(jī)的場(chǎng)景簡(jiǎn)單分析