- 深度卷積神經(jīng)網(wǎng)絡(luò) 內(nèi)容精選 換一換
-
和大多數(shù)加速器運(yùn)行時(shí)軟件棧的構(gòu)造基本一致,昇騰AI處理器中的運(yùn)行管理器、驅(qū)動(dòng)和任務(wù)調(diào)度器緊密配合,共同有序完成任務(wù)分發(fā)至相應(yīng)硬件資源并執(zhí)行。這個(gè)調(diào)度過程為深度神經(jīng)網(wǎng)絡(luò)計(jì)算過程中緊密有序的輸送了任務(wù),保證了任務(wù)執(zhí)行的連續(xù)性和高效性。 華為云 面向未來的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)字化成功的來自:百科來自:百科
- 深度卷積神經(jīng)網(wǎng)絡(luò) 相關(guān)內(nèi)容
-
華為云計(jì)算 云知識(shí) 軟件開發(fā)必讀!華為云軟件開發(fā)生產(chǎn)線CodeArts深度體驗(yàn)指南 軟件開發(fā)必讀!華為云軟件開發(fā)生產(chǎn)線CodeArts深度體驗(yàn)指南 時(shí)間:2023-07-27 14:43:25 云計(jì)算 軟件開發(fā) 華為云軟件開發(fā)生產(chǎn)線 CodeArts產(chǎn)品入口>> 7月7日-9日,來自:百科TBE(Tensor Boost Engine)提供了昇騰AI處理器自定義算子開發(fā)能力,通過TBE提供的API和自定義算子編程開發(fā)界面可以完成相應(yīng)神經(jīng)網(wǎng)絡(luò)算子的開發(fā)。 張量(Tensor)是TBE算子中的數(shù)據(jù),包括輸入數(shù)據(jù)與輸出數(shù)據(jù),TensorDesc(Tensor描述符)是對(duì)輸入數(shù)據(jù)與來自:百科
- 深度卷積神經(jīng)網(wǎng)絡(luò) 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 內(nèi)容審核 內(nèi)容審核 時(shí)間:2020-10-30 15:37:36 內(nèi)容審核( Content Moderation )基于基于深度神經(jīng)網(wǎng)絡(luò)模型,實(shí)現(xiàn)對(duì)圖像、文本、視頻內(nèi)容的智能檢測(cè)檢測(cè),可自動(dòng)進(jìn)行涉黃、廣告、涉政涉暴、涉政敏感人物、違禁品和灌水文本等內(nèi)容的檢測(cè),幫助客戶降低業(yè)務(wù)違規(guī)風(fēng)險(xiǎn),大幅降低人工審核成本。來自:百科GA CS )能夠提供優(yōu)秀的浮點(diǎn)計(jì)算能力,從容應(yīng)對(duì)高實(shí)時(shí)、高并發(fā)的海量計(jì)算場(chǎng)景。P系列適合于深度學(xué)習(xí),科學(xué)計(jì)算,CAE等;G系列適合于3D動(dòng)畫渲染,CAD等 應(yīng)用場(chǎng)景 人工智能 GPU包含上千個(gè)計(jì)算單元,在并行計(jì)算方面展示出強(qiáng)大的優(yōu)勢(shì),P1、P2v實(shí)例針對(duì)深度學(xué)習(xí)特殊優(yōu)化,可在短時(shí)間內(nèi)完成海量計(jì)算;Pi1實(shí)例整型計(jì)來自:百科實(shí)時(shí)語音識(shí)別 、錄音文件識(shí)別有如下優(yōu)勢(shì): 識(shí)別準(zhǔn)確率高:采用最新一代 語音識(shí)別 技術(shù),基于深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Networks,簡稱DNN)技術(shù),大大提高了抗噪性能,使識(shí)別準(zhǔn)確率顯著提升。 識(shí)別速度快:把語言模型、詞典和聲學(xué)模型統(tǒng)一集成為一個(gè)大的神經(jīng)網(wǎng)絡(luò),同時(shí)在工程上進(jìn)行了大量的優(yōu)化,大幅提升解碼速度,使識(shí)別速度在業(yè)內(nèi)處于領(lǐng)先地位。來自:專題
- 《深度剖析:殘差連接如何攻克深度卷積神經(jīng)網(wǎng)絡(luò)的梯度與退化難題》
- 強(qiáng)化學(xué)習(xí)中的深度卷積神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)與應(yīng)用實(shí)例
- 深度學(xué)習(xí)(七)——卷積神經(jīng)網(wǎng)絡(luò)
- 動(dòng)手學(xué)深度學(xué)習(xí)之卷積神經(jīng)網(wǎng)絡(luò)(一)
- PyTorch深度學(xué)習(xí)實(shí)戰(zhàn) | 典型卷積神經(jīng)網(wǎng)絡(luò)
- 《深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)從入門到精通》——2.7 內(nèi)外卷積運(yùn)算
- 《深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)從入門到精通》——2.8 膨脹卷積運(yùn)算
- 《深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)從入門到精通》——2.10 卷積面計(jì)算
- 《深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)從入門到精通》——1.3 卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用和影響
- 《深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)從入門到精通》——1.2 卷積神經(jīng)網(wǎng)絡(luò)的形成和演變