- spark大數(shù)據(jù)處理技術(shù) 內(nèi)容精選 換一換
-
HBase支持帶索引的數(shù)據(jù)存儲(chǔ),適合高性能基于索引查詢的場(chǎng)景。 數(shù)據(jù)計(jì)算 MRS 提供多種主流計(jì)算引擎:MapReduce(批處理)、Tez(DAG模型)、Spark(內(nèi)存計(jì)算)、SparkStreaming(微批流計(jì)算)、Storm(流計(jì)算)、Flink(流計(jì)算),滿足多種大數(shù)據(jù)應(yīng)用場(chǎng)景,將數(shù)據(jù)進(jìn)行結(jié)構(gòu)和邏輯的轉(zhuǎn)換,轉(zhuǎn)化成滿足業(yè)務(wù)目標(biāo)的數(shù)據(jù)模型。來自:百科級(jí)垂直優(yōu)化,全棧式性能加速,同時(shí)具備百萬規(guī)模元數(shù)據(jù)毫秒級(jí)響應(yīng),為用戶提供極致性能體驗(yàn) 領(lǐng)先開源技術(shù) 主流引擎Spark、Hive、Flink等深度改造,擁有索引、緩存、元數(shù)據(jù)等關(guān)鍵技術(shù);自研CarbonData毫秒級(jí)點(diǎn)查,Superior調(diào)度突破單集群20000節(jié)點(diǎn)+ 高安全高可用來自:專題
- spark大數(shù)據(jù)處理技術(shù) 相關(guān)內(nèi)容
-
來自:云商店華為云計(jì)算 云知識(shí) hadoop三大組件是什么 hadoop三大組件是什么 時(shí)間:2020-09-21 09:15:14 hadoop三大組件mapreduce分布式運(yùn)算框架yarn任務(wù)調(diào)度平臺(tái)hdfs分布式文件系統(tǒng) 1.HDFS數(shù)據(jù)存放策略:分塊存儲(chǔ)+副本存放。 2.數(shù)據(jù)拓?fù)浣Y(jié)來自:百科
- spark大數(shù)據(jù)處理技術(shù) 更多內(nèi)容
-
業(yè)務(wù)協(xié)同,提升了協(xié)同效率和數(shù)據(jù)的及時(shí)性、準(zhǔn)確性。 回到最后,華為云可以以 低代碼開發(fā)平臺(tái) 使能企業(yè)“開發(fā)者”構(gòu)建應(yīng)用,實(shí)現(xiàn)了輕應(yīng)用、行業(yè)應(yīng)用、大屏應(yīng)用和移動(dòng)小程序的快速開發(fā)和云上部署。它幫助我們實(shí)現(xiàn)了企業(yè)產(chǎn)品全生命周期和供應(yīng)鏈的可視化、可追溯性。它還幫助我們內(nèi)置了國(guó)際化的企業(yè)管理先進(jìn)來自:百科數(shù)據(jù)轉(zhuǎn)發(fā)至 函數(shù)工作流 數(shù)據(jù)轉(zhuǎn)發(fā)至函數(shù)工作流 對(duì)于設(shè)備上報(bào)到平臺(tái)的數(shù)據(jù),使用函數(shù)工作流(FunctionGraph)處理實(shí)時(shí)流數(shù)據(jù)。通過函數(shù)服務(wù),用戶只需編寫業(yè)務(wù)函數(shù)代碼并設(shè)置運(yùn)行的條件,無需配置和管理服務(wù)器等基礎(chǔ)設(shè)施,即可跟蹤設(shè)備的設(shè)備屬性、消息上報(bào),狀態(tài)變更,分析、整理和計(jì)量數(shù)來自:專題CDM 、SQL、MR、Shell、MLS、Spark等多種數(shù)據(jù)處理節(jié)點(diǎn),提供豐富的調(diào)度配置策略與海量的作業(yè)調(diào)度能力。 全鏈路 數(shù)據(jù)治理 管控 數(shù)據(jù)全生命周期管控,提供數(shù)據(jù)規(guī)范定義及可視化的模型設(shè)計(jì),智能化的幫助用戶生成數(shù)據(jù)處理代碼,數(shù)據(jù)處理全流程質(zhì)量監(jiān)控,異常事件實(shí)時(shí)通知。 統(tǒng)一數(shù)據(jù)資產(chǎn)管理來自:百科電商實(shí)時(shí)業(yè)務(wù)數(shù)據(jù)分析 使用 DLI 幫助電商平臺(tái)統(tǒng)計(jì)實(shí)時(shí)訪問數(shù)據(jù)量、訂單數(shù)、人數(shù)等指標(biāo),從而在顯示大屏上實(shí)時(shí)展示相關(guān)數(shù)據(jù),及時(shí)了解數(shù)據(jù)變化,調(diào)整營(yíng)銷策略。 使用DLI幫助電商平臺(tái)統(tǒng)計(jì)實(shí)時(shí)訪問數(shù)據(jù)量、訂單數(shù)、人數(shù)等指標(biāo),從而在顯示大屏上實(shí)時(shí)展示相關(guān)數(shù)據(jù),及時(shí)了解數(shù)據(jù)變化,調(diào)整營(yíng)銷策略。 使用DLI進(jìn)行電商實(shí)時(shí)業(yè)務(wù)數(shù)據(jù)分析來自:專題華為云計(jì)算 云知識(shí) 數(shù)據(jù)倉(cāng)庫(kù) DWS應(yīng)用案例 數(shù)據(jù)處理耗時(shí)從天級(jí)縮短至小時(shí)級(jí) 數(shù)據(jù)倉(cāng)庫(kù)DWS應(yīng)用案例 數(shù)據(jù)處理耗時(shí)從天級(jí)縮短至小時(shí)級(jí) 時(shí)間:2021-03-08 15:10:22 數(shù)據(jù)倉(cāng)庫(kù) 數(shù)據(jù)倉(cāng)庫(kù)服務(wù)(Data Warehouse Service,簡(jiǎn)稱DWS)是一種即開即用、安全來自:百科
- 2021年大數(shù)據(jù)Spark(二十六):SparkSQL數(shù)據(jù)處理分析
- 【Spark】(task1)PySpark基礎(chǔ)數(shù)據(jù)處理
- 《Spark Streaming實(shí)時(shí)流式大數(shù)據(jù)處理實(shí)戰(zhàn)》 ——1 初識(shí)Spark
- 《Spark Streaming實(shí)時(shí)流式大數(shù)據(jù)處理實(shí)戰(zhàn)》 ——2.2.5 Spark On Mesos模式
- 《Spark Streaming實(shí)時(shí)流式大數(shù)據(jù)處理實(shí)戰(zhàn)》 ——2.2.4 Spark On Yarn模式
- 《Spark Streaming實(shí)時(shí)流式大數(shù)據(jù)處理實(shí)戰(zhàn)》 ——3 Spark編程模型
- 《Spark Streaming實(shí)時(shí)流式大數(shù)據(jù)處理實(shí)戰(zhàn)》 ——2.2 Spark運(yùn)行模式
- 《Spark Streaming實(shí)時(shí)流式大數(shù)據(jù)處理實(shí)戰(zhàn)》 ——3.8 實(shí)例——Spark RDD操作
- 《Spark Streaming實(shí)時(shí)流式大數(shù)據(jù)處理實(shí)戰(zhàn)》 ——1.2.2 Spark Streaming初識(shí)
- 《Spark Streaming實(shí)時(shí)流式大數(shù)據(jù)處理實(shí)戰(zhàn)》