- ilog規(guī)則引擎流式 內(nèi)容精選 換一換
-
0時(shí)代。 移動(dòng)互聯(lián)網(wǎng)的發(fā)展,需要對(duì)海量,多樣化,高并發(fā)的數(shù)據(jù)進(jìn)行實(shí)時(shí)分析,交互式查詢。使大數(shù)據(jù)進(jìn)入了2.0時(shí)代。 當(dāng)前,物聯(lián)網(wǎng)的發(fā)展,需要對(duì)海量流式數(shù)據(jù),人工智能分析等提供毫秒級(jí)的低時(shí)延處理能力,所以我們正處在大數(shù)據(jù)3.0時(shí)代,需要更先進(jìn)的認(rèn)知計(jì)算。 文中課程 更多精彩課程、實(shí)驗(yàn)、微認(rèn)來自:百科設(shè)備的運(yùn)行狀態(tài)等信息上傳到IT系統(tǒng)或大數(shù)據(jù)平臺(tái)中,實(shí)現(xiàn)所有設(shè)備的信息可視化,一旦生產(chǎn)線出現(xiàn)故障,企業(yè)能夠快速定位問題。通過配置LINK的規(guī)則引擎,把設(shè)備參數(shù)的極限值輸入到設(shè)備引擎里面,如果設(shè)備的實(shí)時(shí)參數(shù)一直在向極限值接近,就發(fā)出告警信息,提醒用戶停止設(shè)備,對(duì)設(shè)備進(jìn)行維護(hù)和保養(yǎng)。 表4來自:百科
- ilog規(guī)則引擎流式 相關(guān)內(nèi)容
-
析 時(shí)間:2021-06-17 14:58:31 數(shù)據(jù)庫 GaussDB (DWS)在實(shí)時(shí)數(shù)據(jù)分析的應(yīng)用如下圖所示。分析過程有如下的特點(diǎn): 流式數(shù)據(jù)實(shí)時(shí)入庫:IoT、互聯(lián)網(wǎng)等數(shù)據(jù)經(jīng)過流計(jì)算及AI服務(wù)處理后,可實(shí)時(shí)寫入GaussDB(DWS)。 實(shí)時(shí)監(jiān)控與預(yù)測(cè):圍繞數(shù)據(jù)進(jìn)行分析和預(yù)測(cè)來自:百科在線遷移是在業(yè)務(wù)不停機(jī)的情況下,完整地把對(duì)方數(shù)據(jù)庫搬過來; 2. 實(shí)時(shí)同步是在以毫秒時(shí)延,將需要的數(shù)據(jù)一直同步,業(yè)務(wù)間共享; 3. 數(shù)據(jù)訂閱是把變化的數(shù)據(jù),流式地推送給下游業(yè)務(wù)讀取和消費(fèi); 4. 異地災(zāi)備是在異地做一份完整數(shù)據(jù)的保護(hù),以備災(zāi)難時(shí)恢復(fù)業(yè)務(wù); 5. 云上備份是將外部備份定期保存在云上,非實(shí)時(shí),成本低。來自:百科
- ilog規(guī)則引擎流式 更多內(nèi)容
-
時(shí)間:2020-09-24 15:31:13 實(shí)時(shí)流計(jì)算服務(wù) (Cloud Stream Service,簡(jiǎn)稱 CS ),是運(yùn)行在公有云上的實(shí)時(shí)流式大數(shù)據(jù)分析服務(wù),全托管的方式用戶無需感知計(jì)算集群,只需聚焦于Stream SQL業(yè)務(wù),即時(shí)執(zhí)行作業(yè),完全兼容Apache Flink(1.5來自:百科、數(shù)據(jù)訂閱、流式計(jì)算等功能,最大程度減少研發(fā)和運(yùn)維的復(fù)雜度。 如何十分鐘快速上手時(shí)序數(shù)據(jù)庫?主流時(shí)序數(shù)據(jù)庫在線獲取。核心代碼,包括集群功能全部開源。針對(duì)物聯(lián)網(wǎng)、車聯(lián)網(wǎng)、工業(yè)互聯(lián)網(wǎng)、IT運(yùn)維等設(shè)計(jì)和優(yōu)化的大數(shù)據(jù)平臺(tái)???0倍以上的時(shí)序數(shù)據(jù)庫功能,提供緩存、數(shù)據(jù)訂閱、流式計(jì)算等功能,最大程度減少研發(fā)和運(yùn)維的復(fù)雜度。來自:專題安全處理。 號(hào)碼屏蔽 從WebPortal界面查詢用戶、導(dǎo)出用戶列表時(shí),都需要對(duì)用戶號(hào)碼進(jìn)行屏蔽處理。 模塊可靠性 分類 原理 規(guī)則引擎模塊 規(guī)則引擎嵌入應(yīng)用程序,用戶可以靈活自主的進(jìn)行業(yè)務(wù)決策,使IoT系統(tǒng)很好的適應(yīng)復(fù)雜業(yè)務(wù)場(chǎng)景,增強(qiáng) 物聯(lián)網(wǎng)平臺(tái) 可擴(kuò)展性和可維護(hù)性。 APIServer模塊來自:百科Kafka客戶端。 分布式消息服務(wù) Kafka 分布式消息服務(wù) Kafka 是一個(gè)高吞吐、高可用的消息中間件服務(wù),適用于構(gòu)建實(shí)時(shí)數(shù)據(jù)管道、流式數(shù)據(jù)處理、第三方解耦、流量削峰去谷等場(chǎng)景,具有大規(guī)模、高可靠、高并發(fā)訪問、可擴(kuò)展且完全托管的特點(diǎn),是分布式應(yīng)用上云必不可少的重要組件 產(chǎn)品詳情立即注冊(cè)一元域名華為 云桌面來自:百科溫度過高時(shí)自動(dòng)關(guān)閉設(shè)備 物聯(lián)網(wǎng)平臺(tái)支持設(shè)備數(shù)據(jù)上報(bào)和設(shè)備命令下發(fā),但若要將兩者聯(lián)動(dòng)起來,一般需要由應(yīng)用服務(wù)器實(shí)現(xiàn)對(duì)應(yīng)邏輯。 設(shè)備接入服務(wù) 提供規(guī)則引擎功能,平臺(tái)上簡(jiǎn)單幾步操作即可實(shí)現(xiàn)數(shù)據(jù)上報(bào)特定數(shù)據(jù)時(shí)平臺(tái)自動(dòng)下發(fā)指定命令,減少應(yīng)用服務(wù)器開發(fā)工作量。 設(shè)備模擬器快速接入 以設(shè)備接入模擬器來自:專題設(shè)備的管理、智能控制。 邊緣節(jié)點(diǎn) 設(shè)備連接到邊緣節(jié)點(diǎn)后,節(jié)點(diǎn)可以實(shí)現(xiàn)設(shè)備數(shù)據(jù)的采集、存儲(chǔ)、分析、清洗和上報(bào)設(shè)備數(shù)據(jù)至云端,同時(shí)邊緣側(cè)提供規(guī)則引擎、應(yīng)用集成等功能,方便場(chǎng)景編排和業(yè)務(wù)擴(kuò)展。 云端 云端提供設(shè)備管理、IEF、EI等云服務(wù),設(shè)備數(shù)據(jù)上云后通過這些云服務(wù)的標(biāo)準(zhǔn)API實(shí)現(xiàn)更多功能和應(yīng)用。來自:百科一個(gè)大的神經(jīng)網(wǎng)絡(luò),同時(shí)在工程上進(jìn)行了大量的優(yōu)化,大幅提升解碼速度,使識(shí)別速度在業(yè)內(nèi)處領(lǐng)先地位。 多種識(shí)別模式:支持多種實(shí)時(shí)語音轉(zhuǎn)寫模式,如流式識(shí)別、連續(xù)識(shí)別和實(shí)時(shí)識(shí)別模式,靈活適應(yīng)不同應(yīng)用場(chǎng)景。 定制化服務(wù)可定制特定垂直領(lǐng)域的語言層模型,可識(shí)別更多專有詞匯和行業(yè)術(shù)語,進(jìn)一步提高識(shí)別準(zhǔn)確率。來自:百科析 算法預(yù)集成 專業(yè)預(yù)測(cè)性算法支持,預(yù)集成工業(yè)領(lǐng)域典型算法,如決策樹,分類,聚類,回歸,異常檢測(cè)等算法。支持訓(xùn)練模型的靈活導(dǎo)出,可加載到規(guī)則引擎,實(shí)現(xiàn)實(shí)時(shí)告警 生產(chǎn)物料預(yù)估 基于歷史物料數(shù)據(jù),對(duì)生產(chǎn)所需物料進(jìn)行準(zhǔn)確分析預(yù)估,降低倉儲(chǔ)周期,提升效率 優(yōu)勢(shì) 深度算法優(yōu)化 基于業(yè)界時(shí)間序列算法模型,并結(jié)合華為供應(yīng)鏈深度優(yōu)化來自:百科IES與中心云之間的網(wǎng)絡(luò)中斷了怎么辦?數(shù)據(jù)是否會(huì)發(fā)生丟失? 可靠性增強(qiáng):系統(tǒng)可靠性 云上容災(zāi)涉及到的主要云服務(wù)與軟件 恢復(fù)圖 常用概念:即時(shí)恢復(fù) 流式文件處理:背景與價(jià)值 約束與限制:公共 步驟一:準(zhǔn)備工作:獲取資源權(quán)限 配置跨區(qū)域容災(zāi): 購買云服務(wù)器 備份存儲(chǔ)庫并綁定至備份策略來自:百科