- 數(shù)據(jù)倉庫需求分析的任務(wù) 內(nèi)容精選 換一換
-
數(shù)據(jù)庫設(shè)計(jì)需求分析階段的任務(wù) 數(shù)據(jù)庫設(shè)計(jì)需求分析階段的任務(wù) 時(shí)間:2021-06-02 09:52:46 數(shù)據(jù)庫 數(shù)據(jù)庫設(shè)計(jì)需求分析階段的任務(wù),包括: 1. 對用戶業(yè)務(wù)行為和流程進(jìn)行調(diào)查,了解用戶對新系統(tǒng)的期望和目標(biāo),了解目前現(xiàn)存系統(tǒng)的主要問題; 2. 系統(tǒng)調(diào)研、收集和分析需求,確定系統(tǒng)開發(fā)范圍;來自:百科來自:百科
- 數(shù)據(jù)倉庫需求分析的任務(wù) 相關(guān)內(nèi)容
-
華為云計(jì)算 云知識 數(shù)據(jù)庫設(shè)計(jì)需求分析的要求 數(shù)據(jù)庫設(shè)計(jì)需求分析的要求 時(shí)間:2021-06-02 09:51:13 數(shù)據(jù)庫 在做數(shù)據(jù)庫設(shè)計(jì)的需求分析時(shí),需要: 1. 了解現(xiàn)有系統(tǒng)的運(yùn)行概況; 2. 確定新系統(tǒng)的功能要求; 3. 收集能夠?qū)崿F(xiàn)目標(biāo)的基礎(chǔ)數(shù)據(jù)及相關(guān)的業(yè)務(wù)流程。 文中課程 更來自:百科華為云計(jì)算 云知識 數(shù)據(jù)庫設(shè)計(jì)需求分析的意義 數(shù)據(jù)庫設(shè)計(jì)需求分析的意義 時(shí)間:2021-06-02 09:49:24 數(shù)據(jù)庫 需求分析階段主要是收集信息并進(jìn)行分析和整理,為后續(xù)階段提供充足信息。 需求分析是整個(gè)數(shù)據(jù)庫設(shè)計(jì)的基礎(chǔ)。是最困難,也可能最耗時(shí)的階段。需求分析沒做好,會(huì)導(dǎo)致整個(gè)數(shù)據(jù)庫設(shè)計(jì)重新返工。來自:百科
- 數(shù)據(jù)倉庫需求分析的任務(wù) 更多內(nèi)容
-
數(shù)據(jù)工坊 DWR有哪些功能 數(shù)據(jù)工坊DWR是開放的近數(shù)據(jù)處理服務(wù)。支持易用的工作流編排和開放生態(tài)的數(shù)據(jù)處理算子市場,能夠?qū)崿F(xiàn)靈活的數(shù)據(jù)及時(shí)處理。 數(shù)據(jù)工坊DWR是開放的近數(shù)據(jù)處理服務(wù)。支持易用的工作流編排和開放生態(tài)的數(shù)據(jù)處理算子市場,能夠?qū)崿F(xiàn)靈活的數(shù)據(jù)及時(shí)處理。 [喜報(bào)]DWR榮獲2021年 數(shù)據(jù)管理 解決方案金獎(jiǎng)來自:專題庫服務(wù),為用戶提供海量數(shù)據(jù)的存儲、挖掘和分析能力。 助力某銀行提升數(shù)據(jù)分析性能30%,實(shí)現(xiàn)分析決策一體化 應(yīng)用場景:替換Oracle、TD、GP、Vertica、Gbase、Impala 數(shù)據(jù)倉庫 ,建設(shè)滿足未來IT架構(gòu)云化演進(jìn)的分布式數(shù)據(jù)倉庫。 客戶痛點(diǎn): Teradata成本高,一體機(jī)封閉架構(gòu),技術(shù)無法自主可控;來自:百科按需付費(fèi):DWS按實(shí)際使用量和使用時(shí)長計(jì)費(fèi)。您需要支付的費(fèi)率很低,只需為實(shí)際消耗的資源付費(fèi)。 門檻低:您無需前期投入較多固定成本,可以從低規(guī)格的數(shù)據(jù)倉庫實(shí)例起步,以后隨時(shí)根據(jù)業(yè)務(wù)情況彈性伸縮所需資源,按需開支。 華為云 面向未來的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)字化成功的關(guān)鍵是以云原生的思維踐行云原生,全數(shù)字化、全云化、AI驅(qū)動(dòng),一切皆服務(wù)。來自:百科大數(shù)據(jù)融合分析 隨著IT、信息技術(shù)的發(fā)展和進(jìn)步,數(shù)據(jù)資源已經(jīng)成為企業(yè)的核心資源。整合數(shù)據(jù)資源,構(gòu)建大數(shù)據(jù)平臺,發(fā)現(xiàn)數(shù)據(jù)價(jià)值,成為企業(yè)經(jīng)營的新趨勢和迫切訴求。而如何從海量數(shù)據(jù)中快速挖掘“價(jià)值”,成為助力客戶實(shí)現(xiàn)預(yù)測性分析的關(guān)鍵要素。 增強(qiáng)型ETL和實(shí)時(shí)BI分析 數(shù)據(jù)倉庫在整個(gè)BI系統(tǒng)中來自:百科
- 數(shù)據(jù)倉庫服務(wù) DWS
- 數(shù)據(jù)倉庫服務(wù)應(yīng)用場景_數(shù)據(jù)倉庫服務(wù)客戶案例_GaussDB(DWS)
- 數(shù)據(jù)倉庫服務(wù) DWS入門
- 智能數(shù)據(jù)洞察 DataArts Insight
- GeminiDB Cassandra 接口
- 數(shù)據(jù)倉庫服務(wù)GaussDB(DWS)學(xué)習(xí)與資源_數(shù)據(jù)倉庫培訓(xùn)課程_數(shù)據(jù)倉庫視頻教程
- 數(shù)據(jù)治理中心
- 數(shù)據(jù)倉庫服務(wù) GaussDB(DWS)產(chǎn)品架構(gòu)_技術(shù)特點(diǎn)
- 數(shù)據(jù)倉庫服務(wù) DWS功能
- 數(shù)據(jù)倉庫服務(wù) DWS定價(jià)