- 數(shù)據(jù)倉(cāng)庫(kù)歷史數(shù)據(jù)的回滾 內(nèi)容精選 換一換
-
數(shù)據(jù)庫(kù) 數(shù)據(jù)倉(cāng)庫(kù) 服務(wù),Data Warehouse Service,簡(jiǎn)稱 GaussDB (DWS),是一種基于公有云基礎(chǔ)架構(gòu)和平臺(tái)的在線數(shù)據(jù)處理數(shù)據(jù)庫(kù),提供即開(kāi)即用、可擴(kuò)展且完全托管的分析型數(shù)據(jù)庫(kù)服務(wù)。GaussDB(DWS)是基于華為云原生融合數(shù)據(jù)倉(cāng)庫(kù)GaussDB產(chǎn)品的服務(wù),兼容標(biāo)準(zhǔn)ANSI來(lái)自:百科數(shù)據(jù)庫(kù)、數(shù)據(jù)倉(cāng)庫(kù)、 數(shù)據(jù)湖 、湖倉(cāng)一體分別是什么?:數(shù)據(jù)智能方案 約束和限制: 數(shù)據(jù)管理服務(wù) 使用限制 如何防止任意源連接數(shù)據(jù)庫(kù) 如何防止任意源連接數(shù)據(jù)庫(kù) 如何防止任意源連接數(shù)據(jù)庫(kù) GaussDB(for MySQL)安全最佳實(shí)踐:內(nèi)網(wǎng)連接實(shí)例,更快更安全 概述 數(shù)據(jù)庫(kù)、數(shù)據(jù)倉(cāng)庫(kù)、數(shù)據(jù)湖來(lái)自:百科
- 數(shù)據(jù)倉(cāng)庫(kù)歷史數(shù)據(jù)的回滾 相關(guān)內(nèi)容
-
聚合指標(biāo)數(shù)據(jù)是指將原始指標(biāo)數(shù)據(jù)經(jīng)過(guò)聚合處理后的指標(biāo)數(shù)據(jù),聚合指標(biāo)數(shù)據(jù)保留時(shí)間根據(jù)聚合周期不同而不同,具體如下: 聚合周期為5分鐘的指標(biāo)數(shù)據(jù),指標(biāo)數(shù)據(jù)保留10天; 聚合周期為20分鐘的指標(biāo)數(shù)據(jù),指標(biāo)數(shù)據(jù)保留20天; 聚合周期為1小時(shí)的指標(biāo)數(shù)據(jù),指標(biāo)數(shù)據(jù)保留155天; 聚合周期為4小時(shí)的指標(biāo)數(shù)據(jù),指標(biāo)數(shù)據(jù)保留300天;來(lái)自:百科企業(yè)提供精準(zhǔn)、高效的支持。 基于流計(jì)算的可視化大屏,為企業(yè)、政府帶來(lái)全新的視覺(jué)體驗(yàn) 適合人群:面向?qū)?shí)時(shí)流計(jì)算和可視化感興趣的從業(yè)人員,社會(huì)大眾和高校師生 培訓(xùn)方案:結(jié)合華為云服務(wù)搭建基于流計(jì)算的可視化平臺(tái) 技術(shù)能力:了解流計(jì)算的關(guān)鍵技術(shù),掌握華為云基于流計(jì)算的可視化解決方案 認(rèn)來(lái)自:專題
- 數(shù)據(jù)倉(cāng)庫(kù)歷史數(shù)據(jù)的回滾 更多內(nèi)容
-
應(yīng)用程序與數(shù)據(jù)倉(cāng)庫(kù)的連接、數(shù)據(jù)備份、數(shù)據(jù)恢復(fù)、數(shù)據(jù)倉(cāng)庫(kù)資源和性能監(jiān)控等運(yùn)維管理工作。 與大數(shù)據(jù)無(wú)縫集成:可以使用標(biāo)準(zhǔn)SQL查詢HDFS、 OBS 上的數(shù)據(jù),數(shù)據(jù)無(wú)需搬遷。 提供一鍵式異構(gòu) 數(shù)據(jù)庫(kù)遷移 工具:提供配套的遷移工具,可支持MySQL、Oracle和Teradata的SQL腳本遷移到GaussDB(DWS)。來(lái)自:百科助客戶實(shí)現(xiàn)數(shù)據(jù)自由流動(dòng)。支持文件系統(tǒng),關(guān)系數(shù)據(jù)庫(kù),數(shù)據(jù)倉(cāng)庫(kù),NoSQL,大數(shù)據(jù)云服務(wù)和對(duì)象存儲(chǔ)等數(shù)據(jù)源,無(wú)論是客戶自建還是公有云上的數(shù)據(jù)源 本地?cái)?shù)據(jù)遷移上云 本地?cái)?shù)據(jù)是指存儲(chǔ)在用戶自建或者租用的IDC中的數(shù)據(jù),或者第三方云環(huán)境中的數(shù)據(jù),包括關(guān)系型數(shù)據(jù)庫(kù)、NoSQL數(shù)據(jù)庫(kù)、OLAP數(shù)據(jù)庫(kù)、文件系統(tǒng)等。來(lái)自:百科DLI 表表示數(shù)據(jù)存儲(chǔ)在 數(shù)據(jù)湖探索 (DLI)內(nèi)部的表。查詢性能更好,適用于對(duì)時(shí)延敏感類的業(yè)務(wù),如交互類的查詢等。與DLI表相對(duì)應(yīng)的,就是數(shù)據(jù)存儲(chǔ)在其他服務(wù)中的表,例如OBS表,CloudTable表等。OBS表表示數(shù)據(jù)存儲(chǔ)在OBS服務(wù)的桶中,適用于對(duì)時(shí)延不敏感的業(yè)務(wù),如歷史數(shù)據(jù)統(tǒng)計(jì)分析等。CloudTa來(lái)自:百科HA能力的選擇。 資源管控 用戶可以查看專屬計(jì)算集群下的物理機(jī)列表和計(jì)算資源總量和消耗量以及物理機(jī)上 彈性云服務(wù)器 的列表,用戶能直觀的查看和管理計(jì)算資源。 專屬計(jì)算集群服務(wù) DCC 專屬計(jì)算集群(Dedicated Computing Cluster)為用戶提供物理隔離的云上專屬計(jì)來(lái)自:百科成本、高性能、不斷業(yè)務(wù)、無(wú)須擴(kuò)容的解決方案。 海量數(shù)據(jù)存儲(chǔ)分析的典型場(chǎng)景:PB級(jí)的數(shù)據(jù)存儲(chǔ),批量數(shù)據(jù)分析,毫秒級(jí)的數(shù)據(jù)詳單查詢等 歷史數(shù)據(jù)明細(xì)查詢的典型場(chǎng)景:流水審計(jì),設(shè)備歷史能耗分析,軌跡回放,車輛駕駛行為分析,精細(xì)化監(jiān)控等 海量行為 日志分析 的典型場(chǎng)景:學(xué)習(xí)習(xí)慣分析,運(yùn)營(yíng)日志分析,系統(tǒng)操作日志分析查詢等來(lái)自:專題型質(zhì)量問(wèn)題的各種清洗算子,簡(jiǎn)單拖拽即可完成對(duì)原始數(shù)據(jù)的清洗。物聯(lián)網(wǎng)數(shù)據(jù)分析服務(wù)提供的資產(chǎn)建模能力,將幫助用戶實(shí)現(xiàn)對(duì)企業(yè)的各種物理資產(chǎn)的建模,規(guī)范數(shù)據(jù)格式和交互的語(yǔ)義接口;物聯(lián)網(wǎng)數(shù)據(jù)分析內(nèi)置高性能流計(jì)算引擎,滿足毫秒級(jí)實(shí)時(shí)處理性能要求 智能交通下的數(shù)據(jù)分析 智能交通下的數(shù)據(jù)分析: 業(yè)務(wù)挑戰(zhàn)來(lái)自:專題更多課程、微認(rèn)證、沙箱實(shí)驗(yàn)盡在華為云學(xué)院 數(shù)據(jù)庫(kù)入門與應(yīng)用 隨著科技的進(jìn)步,人們?yōu)榱烁咝Ц踩统杀?span style='color:#C7000B'>的發(fā)布應(yīng)用產(chǎn)品,對(duì)數(shù)據(jù)庫(kù)提出了更高的要求,學(xué)習(xí)該課程能迅速了解華為 云數(shù)據(jù)庫(kù)產(chǎn)品 的功能特性和應(yīng)用;幫您掌握華為 云數(shù)據(jù)庫(kù) 的基本操作和管理。 立即學(xué)習(xí) 最新文章 替換VolcanoJobr來(lái)自:百科效、易用的批量數(shù)據(jù)遷移服務(wù)。 CDM 圍繞大數(shù)據(jù)遷移上云和 智能數(shù)據(jù)湖 解決方案,提供了簡(jiǎn)單易用的遷移能力和多種數(shù)據(jù)源到數(shù)據(jù)湖的集成能力,降低了客戶數(shù)據(jù)源遷移和集成的復(fù)雜性,有效地提高您數(shù)據(jù)遷移和集成的效率。在 數(shù)據(jù)治理中心 ( DataArts Studio )服務(wù)中,CDM作為其中的“數(shù)據(jù)集來(lái)自:專題
- 《解鎖數(shù)據(jù)倉(cāng)庫(kù)潛能:游標(biāo)與ETL協(xié)同的歷史數(shù)據(jù)維護(hù)之道》
- 發(fā)布回滾排程工具全景式分析:如何確保版本控制和回滾操作無(wú)縫銜接
- python根據(jù)歷史數(shù)據(jù)預(yù)測(cè)
- SpringBoot整合Flowable【06】- 查詢歷史數(shù)據(jù)
- openGauss實(shí)驗(yàn)經(jīng)驗(yàn)分享(全量表,增量表,拉鏈表,流水表,快照表)
- 數(shù)據(jù)倉(cāng)庫(kù)的分層
- 基于機(jī)器學(xué)習(xí)的油藏歷史數(shù)據(jù)特征提取
- 數(shù)據(jù)庫(kù)歸檔后歷史數(shù)據(jù)的查詢方式
- 足球- EDA的歷史數(shù)據(jù)分析并可視化
- 基于機(jī)器學(xué)習(xí)的油藏歷史數(shù)據(jù)分析方法
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù)GaussDB(DWS)學(xué)習(xí)與資源_數(shù)據(jù)倉(cāng)庫(kù)培訓(xùn)課程_數(shù)據(jù)倉(cāng)庫(kù)視頻教程
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS入門
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS功能
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS資源
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS定價(jià)
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) GaussDB(DWS)數(shù)據(jù)導(dǎo)入導(dǎo)出_數(shù)據(jù)倉(cāng)庫(kù)數(shù)據(jù)導(dǎo)入導(dǎo)出工具
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù)應(yīng)用場(chǎng)景_數(shù)據(jù)倉(cāng)庫(kù)服務(wù)客戶案例_GaussDB(DWS)
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) GaussDB(DWS)兼容性
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) GaussDB(DWS)數(shù)據(jù)備份恢復(fù)