- 數(shù)據(jù)倉庫的星型模型和雪花模型 內(nèi)容精選 換一換
-
模型調(diào)優(yōu)利器:ModelArts模型評(píng)估診斷 ModelArts模型評(píng)估/診斷功能針對(duì)不同類型模型的評(píng)估任務(wù),提供相應(yīng)的評(píng)估指標(biāo)。在展示評(píng)估結(jié)果的同時(shí),會(huì)根據(jù)不同的數(shù)據(jù)特征對(duì)模型進(jìn)行詳細(xì)的評(píng)估,獲得每個(gè)數(shù)據(jù)特征對(duì)評(píng)估指標(biāo)的敏感度,并給出優(yōu)化建議。 數(shù)據(jù)倉庫 服務(wù)的“千里眼、順風(fēng)耳”來自:專題
- 數(shù)據(jù)倉庫的星型模型和雪花模型 相關(guān)內(nèi)容
-
產(chǎn)品的云原生服務(wù),兼容標(biāo)準(zhǔn)ANSI SQL 99和SQL 2003,同時(shí)兼容PostgreSQL/Oracle數(shù)據(jù)庫生態(tài),為各行業(yè)PB級(jí)海量大數(shù)據(jù)分析提供有競(jìng)爭(zhēng)力的解決方案。 數(shù)據(jù)倉庫服務(wù)提供專業(yè)高效的服務(wù)管理控制平臺(tái),讓用戶自助完成數(shù)據(jù)倉庫的管理和維護(hù),系統(tǒng)可用性高。用戶可以快速創(chuàng)建DWS集群并開展業(yè)務(wù)。來自:百科續(xù)兩年入選Gartner發(fā)布的 數(shù)據(jù)管理 解決方案魔力象限,相比傳統(tǒng)數(shù)據(jù)倉庫,性價(jià)比提升數(shù)倍,具備大規(guī)模擴(kuò)展能力和企業(yè)級(jí)可靠性。 華為云 面向未來的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)字化成功的關(guān)鍵是以云原生的思維踐行云原生,全數(shù)字化、全云化、AI驅(qū)動(dòng),一切皆服務(wù)。 華為云將持續(xù)來自:百科
- 數(shù)據(jù)倉庫的星型模型和雪花模型 更多內(nèi)容
-
另一方面如果鎖住了多張表,又會(huì)阻擋數(shù)據(jù)庫表單更新的事務(wù),造成業(yè)務(wù)的延時(shí)甚至中斷。 解決方案 數(shù)據(jù)倉庫主要適用于企業(yè)數(shù)據(jù)的關(guān)聯(lián)和聚合等分析場(chǎng)景,并從中發(fā)掘出數(shù)據(jù)背后的商業(yè)情報(bào)供決策者參考。這里的數(shù)據(jù)發(fā)掘主要指涉及多張表的大范圍的數(shù)據(jù)聚合和關(guān)聯(lián)的復(fù)雜查詢。 使用數(shù)據(jù)倉庫,通過某個(gè)數(shù)據(jù)轉(zhuǎn)換(ETL)的過程,業(yè)務(wù)運(yùn)營數(shù)來自:百科
“垃圾”回收算法的三個(gè)組成部分 “垃圾”回收算法的三個(gè)組成部分 時(shí)間:2021-03-09 17:34:57 AI開發(fā)平臺(tái) 人工智能 開發(fā)語言環(huán)境 “垃圾”回收算法的三個(gè)組成部分: 1. 內(nèi)存分配:給新建的對(duì)象分配空間 2. 垃圾識(shí)別:識(shí)別哪些對(duì)象是垃圾 3. 內(nèi)存回收:將垃圾占用的空間回收,以便將來繼續(xù)分配來自:百科
基于行業(yè)領(lǐng)域知識(shí)庫快速構(gòu)建數(shù)據(jù)中臺(tái) 通過應(yīng)用華為在企業(yè)業(yè)務(wù)領(lǐng)域積累的豐富的行業(yè)領(lǐng)域模型和算法,幫助企業(yè)構(gòu)建數(shù)據(jù)中臺(tái),快速提升數(shù)據(jù)運(yùn)營能力。 優(yōu)勢(shì) 多行業(yè)支持 覆蓋政務(wù)/稅務(wù)/城市/交通/園區(qū)等各行業(yè)。 標(biāo)準(zhǔn)規(guī)范支持 支持分層結(jié)構(gòu)的行業(yè)數(shù)據(jù)標(biāo)準(zhǔn)。 領(lǐng)域模型豐富 支持包含人員/組織/事件/時(shí)空/車輛/資來自:百科
據(jù)安全和用戶隱私的要求,并在以上各行業(yè)被廣泛地被使用。公有云數(shù)據(jù)倉庫服務(wù)還獲得了如下安全認(rèn)證: 網(wǎng)絡(luò)安全實(shí)驗(yàn)室I CS L的認(rèn)證:該認(rèn)證是遵從英國當(dāng)局頒布的網(wǎng)絡(luò)安全標(biāo)準(zhǔn)設(shè)立的。 隱私和安全管理當(dāng)局PSA的官方認(rèn)證:該認(rèn)證滿足歐盟對(duì)數(shù)據(jù)安全和隱私的要求。 業(yè)務(wù)數(shù)據(jù)安全 數(shù)據(jù)倉庫服務(wù)構(gòu)建來自:百科
在數(shù)據(jù)分散的情況下, 通過跨集群協(xié)同分析, 支撐周期性業(yè)務(wù)分析, 無需做全量數(shù)據(jù)搬移和轉(zhuǎn)化, 提升分析效率; 海量歷史數(shù)據(jù)分析查詢響應(yīng)時(shí)間:小時(shí)級(jí)>分鐘級(jí)。 數(shù)據(jù)倉庫服務(wù) GaussDB (DWS) GaussDB(DWS)是一款具備分析及混合負(fù)載能力的分布式數(shù)據(jù)庫,支持x86和Kun來自:百科
云數(shù)據(jù)庫 GaussDB 行存表和列存表的選擇 特點(diǎn) 方案 更新頻繁程度 數(shù)據(jù)如果頻繁更新,選擇行存表。 插入頻繁程度 頻繁的少量插入,選擇行存表。一次插入大批量數(shù)據(jù),選擇列存表。 表的列數(shù) 表的列數(shù)很多,選擇列存表。 查詢的列數(shù) 如果每次查詢時(shí),只涉及了表的少數(shù)(<50%總列數(shù))幾個(gè)列,選擇列存表。來自:專題
確性、唯一性六個(gè)維度進(jìn)行單列、跨列、跨行和跨表的分析,也支持?jǐn)?shù)據(jù)的清洗和標(biāo)準(zhǔn)化,能夠根據(jù)數(shù)據(jù)標(biāo)準(zhǔn)自動(dòng)生成清洗和標(biāo)準(zhǔn)化的質(zhì)量規(guī)則,支持周期性的監(jiān)控和清洗。 圖5數(shù)據(jù)質(zhì)量規(guī)則體系 數(shù)據(jù)資產(chǎn)管理:360度全鏈路數(shù)據(jù)資產(chǎn)可視化 DAYU提供企業(yè)級(jí)的元數(shù)據(jù)管理,厘清信息資產(chǎn)。數(shù)據(jù)資產(chǎn)管理可來自:百科
- 數(shù)據(jù)倉庫架構(gòu):星型模型和雪花模型的選擇
- 從三范式到建模規(guī)范,詳解數(shù)據(jù)建模知識(shí)體系
- 數(shù)據(jù)倉庫之維度建模介紹-- 未寫完,待更新
- 【商務(wù)智能】數(shù)據(jù)倉庫 ( 多維數(shù)據(jù)模型 | 多維數(shù)據(jù)分析 )
- Kylin相關(guān)知識(shí)總結(jié)
- 事務(wù)隔離級(jí)別與數(shù)據(jù)倉庫建模
- 萬字詳解ETL和數(shù)倉建模!
- 7天玩轉(zhuǎn)數(shù)據(jù)倉庫(DWS)
- 數(shù)據(jù)挖掘:數(shù)據(jù)倉庫相關(guān)知識(shí)筆記
- 一文說透?jìng)鹘y(tǒng)數(shù)據(jù)庫 VS 數(shù)據(jù)倉庫