- 數(shù)據(jù)倉(cāng)庫(kù)的維度和事實(shí) 內(nèi)容精選 換一換
-
云遷移業(yè)務(wù)應(yīng)用評(píng)估的幾個(gè)維度介紹 云遷移業(yè)務(wù)應(yīng)用評(píng)估的幾個(gè)維度介紹 時(shí)間:2021-01-29 09:07:41 云遷移業(yè)務(wù)應(yīng)用的評(píng)估分析項(xiàng)目從源端類別上主要有:應(yīng)用、主機(jī)、數(shù)據(jù)庫(kù)、文件存儲(chǔ)。業(yè)務(wù)應(yīng)用評(píng)估主要從:按場(chǎng)景、按關(guān)聯(lián)性、按層次三個(gè)維度來(lái)看。 業(yè)務(wù)應(yīng)用的評(píng)估分析項(xiàng)目 需要收集的信息項(xiàng):來(lái)自:百科對(duì) 數(shù)據(jù)倉(cāng)庫(kù) 和維度模型的基本知識(shí)和建設(shè)方法論 2.了解維度模型:掌握維度表和事實(shí)表的概念和設(shè)計(jì)方法 3.掌握建設(shè)技巧:結(jié)合商業(yè)應(yīng)用,了解并初步掌握維度模型的建設(shè)過(guò)程和步驟 4.了解DWS服務(wù)在實(shí)現(xiàn)數(shù)據(jù)倉(cāng)庫(kù)和維度模型方面的優(yōu)勢(shì):掌握物理模型實(shí)現(xiàn)技巧以及數(shù)據(jù)加載和數(shù)據(jù)查詢方面的開(kāi)發(fā)技能 課程大綱 第1章 DAY01.來(lái)自:百科
- 數(shù)據(jù)倉(cāng)庫(kù)的維度和事實(shí) 相關(guān)內(nèi)容
-
PP的數(shù)據(jù)倉(cāng)庫(kù)系統(tǒng)有時(shí)候也被劃分到大數(shù)據(jù)平臺(tái)類產(chǎn)品。 但是數(shù)據(jù)倉(cāng)庫(kù)和Hadoop平臺(tái)還是有很多顯著的不同。針對(duì)不同的使用場(chǎng)景其發(fā)揮的作用和給用戶帶來(lái)的體驗(yàn)也不盡相同。用戶可以根據(jù)下表簡(jiǎn)單判斷什么場(chǎng)景更適合用什么樣的產(chǎn)品。 表1數(shù)據(jù)倉(cāng)庫(kù)和Hadoop大數(shù)據(jù)平臺(tái)特性比較 數(shù)據(jù)倉(cāng)庫(kù)和H來(lái)自:百科按需付費(fèi):DWS按實(shí)際使用量和使用時(shí)長(zhǎng)計(jì)費(fèi)。您需要支付的費(fèi)率很低,只需為實(shí)際消耗的資源付費(fèi)。 門(mén)檻低:您無(wú)需前期投入較多固定成本,可以從低規(guī)格的數(shù)據(jù)倉(cāng)庫(kù)實(shí)例起步,以后隨時(shí)根據(jù)業(yè)務(wù)情況彈性伸縮所需資源,按需開(kāi)支。 華為云 面向未來(lái)的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)字化成功的關(guān)鍵是以云原生的思維踐來(lái)自:百科
- 數(shù)據(jù)倉(cāng)庫(kù)的維度和事實(shí) 更多內(nèi)容
-
隨著IT、信息技術(shù)的發(fā)展和進(jìn)步,數(shù)據(jù)資源已經(jīng)成為企業(yè)的核心資源。整合數(shù)據(jù)資源,構(gòu)建大數(shù)據(jù)平臺(tái),發(fā)現(xiàn)數(shù)據(jù)價(jià)值,成為企業(yè)經(jīng)營(yíng)的新趨勢(shì)和迫切訴求。而如何從海量數(shù)據(jù)中快速挖掘“價(jià)值”,成為助力客戶實(shí)現(xiàn)預(yù)測(cè)性分析的關(guān)鍵要素。 增強(qiáng)型ETL和實(shí)時(shí)BI分析 數(shù)據(jù)倉(cāng)庫(kù)在整個(gè)BI系統(tǒng)中起到了支柱的角色,更是來(lái)自:百科云知識(shí) 什么是數(shù)據(jù)倉(cāng)庫(kù) 什么是數(shù)據(jù)倉(cāng)庫(kù) 時(shí)間:2020-09-24 14:40:13 數(shù)據(jù)倉(cāng)庫(kù)是一種用來(lái)存儲(chǔ)和分析結(jié)構(gòu)化數(shù)據(jù)的特殊類型的數(shù)據(jù)庫(kù)。數(shù)據(jù)倉(cāng)庫(kù)擅長(zhǎng)對(duì)來(lái)自不同來(lái)源的數(shù)據(jù)進(jìn)行聚合和關(guān)聯(lián),從而發(fā)掘出數(shù)據(jù)中隱藏的商業(yè)價(jià)值。在企業(yè)的經(jīng)營(yíng)決策,商業(yè)情報(bào)分析等領(lǐng)域都起著至關(guān)重要的作用。 隨來(lái)自:百科DWS解決方案探討 華為云 面向未來(lái)的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)字化成功的關(guān)鍵是以云原生的思維踐行云原生,全數(shù)字化、全云化、AI驅(qū)動(dòng),一切皆服務(wù)。 華為云將持續(xù)創(chuàng)新,攜手客戶、合作伙伴和開(kāi)發(fā)者,致力于讓云無(wú)處不在,讓智能無(wú)所不及,共建智能世界云底座。 華為云官網(wǎng)立即注冊(cè)一元域名華為 云桌面來(lái)自:百科用熟悉的SQL語(yǔ)言即可訪問(wèn)所有數(shù)據(jù)。 實(shí)時(shí)交互分析 針對(duì)即時(shí)的分析需求,分析人員可實(shí)時(shí)從大數(shù)據(jù)平臺(tái)中獲取信息。 彈性伸縮 增加節(jié)點(diǎn),即可擴(kuò)展系統(tǒng)的數(shù)據(jù)存儲(chǔ)能力和查詢分析的性能,可支持PB級(jí)數(shù)據(jù)的存儲(chǔ)和計(jì)算。 增強(qiáng)型ETL和實(shí)時(shí)BI分析 數(shù)據(jù)倉(cāng)庫(kù)在整個(gè)BI系統(tǒng)中起到了支柱的角色,更來(lái)自:百科數(shù)據(jù)質(zhì)量可以從完整性、有效性、及時(shí)性、一致性、準(zhǔn)確性、唯一性六個(gè)維度進(jìn)行單列、跨列、跨行和跨表的分析,也支持?jǐn)?shù)據(jù)的清洗和標(biāo)準(zhǔn)化,能夠根據(jù)數(shù)據(jù)標(biāo)準(zhǔn)自動(dòng)生成清洗和標(biāo)準(zhǔn)化的質(zhì)量規(guī)則,支持周期性的監(jiān)控和清洗。 圖5數(shù)據(jù)質(zhì)量規(guī)則體系 數(shù)據(jù)資產(chǎn)管理:360度全鏈路數(shù)據(jù)資產(chǎn)可視化 DAYU提供企業(yè)級(jí)的元 數(shù)據(jù)管理 ,厘清信息資產(chǎn)。數(shù)來(lái)自:百科雪花型模型是直接面對(duì)報(bào)表類型應(yīng)用常用的模型結(jié)構(gòu),因?yàn)?span style='color:#C7000B'>事實(shí)表的維度展開(kāi)以后和雪花結(jié)構(gòu)一樣而得名,是在OLAP應(yīng)用中,尤其是報(bào)表系統(tǒng)中會(huì)經(jīng)常遇到雪花模型的情況。如下圖即一個(gè)雪花模型。 圖中,保存度量值的詳細(xì)值或事實(shí)的表稱為“事實(shí)表”,如銷售單日?qǐng)?bào)表; 維度表就是觀察該事物的角度(維度),比如客戶角度,時(shí)間角度和產(chǎn)品角度。來(lái)自:百科到某張模型表的字段上。 關(guān)系建模和維度建模的區(qū)別? 關(guān)系建模為事務(wù)性模型,對(duì)應(yīng)三范式建模。 維度建模為分析性模型,主要包括事實(shí)表、維度表的設(shè)計(jì),多用于實(shí)現(xiàn)多角度、多層次的數(shù)據(jù)查詢和分析。 規(guī)范化的數(shù)據(jù)如何使用? 規(guī)范化的數(shù)據(jù)可以作為BI的基本信息,也可以作為上層應(yīng)用的源數(shù)據(jù),也可以接入各類 數(shù)據(jù)可視化 報(bào)表等。來(lái)自:專題LibrA企業(yè)級(jí)數(shù)據(jù)倉(cāng)庫(kù)內(nèi)核,提供即開(kāi)即用、可擴(kuò)展且完全托管的分析型數(shù)據(jù)庫(kù)服務(wù)。兼容PostgreSQL生態(tài),您可基于標(biāo)準(zhǔn)SQL,結(jié)合商業(yè)智能工具,經(jīng)濟(jì)高效地挖掘和分析海量數(shù)據(jù)。 報(bào)名學(xué)習(xí) 最新文章 OLTP和OLAP的比較 數(shù)據(jù)倉(cāng)庫(kù)DWS應(yīng)用案例 數(shù)據(jù)處理耗時(shí)從天級(jí)縮短至小時(shí)級(jí) 數(shù)據(jù)倉(cāng)庫(kù)DWS助力某高校打破數(shù)據(jù)孤島實(shí)現(xiàn)數(shù)據(jù)綜合分析案例來(lái)自:百科在結(jié)構(gòu)化的數(shù)據(jù)表里。數(shù)據(jù)表之間相互關(guān)聯(lián),反映客觀事物間的本質(zhì)聯(lián)系。數(shù)據(jù)庫(kù)能有效地幫助一個(gè)組織或企業(yè)科學(xué)地管理各類信息資源。 數(shù)據(jù)倉(cāng)庫(kù)和數(shù)據(jù)庫(kù)的主要區(qū)別: 1、數(shù)據(jù)庫(kù)是面向事務(wù)的設(shè)計(jì),數(shù)據(jù)倉(cāng)庫(kù)是面向主題設(shè)計(jì)的。 2、數(shù)據(jù)庫(kù)一般存儲(chǔ)在線交易數(shù)據(jù),數(shù)據(jù)倉(cāng)庫(kù)存儲(chǔ)的一般是歷史數(shù)據(jù)。 3、數(shù)來(lái)自:百科倉(cāng)庫(kù)系統(tǒng)所流行的一些黑科技,包括機(jī)器碼級(jí)別的向量計(jì)算,算子間和算子內(nèi)的并行,節(jié)點(diǎn)內(nèi)和節(jié)點(diǎn)間并行,使用LLVM優(yōu)化編譯查詢計(jì)劃的本機(jī)代碼等。這些黑科技極大地提高了數(shù)據(jù)查詢和分析的性能,為用戶帶來(lái)了更好的體驗(yàn),解決了特定場(chǎng)景當(dāng)中的業(yè)務(wù)痛點(diǎn)。 GaussDB (DWS)服務(wù)即開(kāi)即用 相比來(lái)自:百科產(chǎn)品的云原生服務(wù),兼容標(biāo)準(zhǔn)ANSI SQL 99和SQL 2003,同時(shí)兼容PostgreSQL/Oracle數(shù)據(jù)庫(kù)生態(tài),為各行業(yè)PB級(jí)海量大數(shù)據(jù)分析提供有競(jìng)爭(zhēng)力的解決方案。 數(shù)據(jù)倉(cāng)庫(kù)服務(wù)提供專業(yè)高效的服務(wù)管理控制平臺(tái),讓用戶自助完成數(shù)據(jù)倉(cāng)庫(kù)的管理和維護(hù),系統(tǒng)可用性高。用戶可以快速創(chuàng)建DWS集群并開(kāi)展業(yè)務(wù)。來(lái)自:百科另一方面如果鎖住了多張表,又會(huì)阻擋數(shù)據(jù)庫(kù)表單更新的事務(wù),造成業(yè)務(wù)的延時(shí)甚至中斷。 解決方案 數(shù)據(jù)倉(cāng)庫(kù)主要適用于企業(yè)數(shù)據(jù)的關(guān)聯(lián)和聚合等分析場(chǎng)景,并從中發(fā)掘出數(shù)據(jù)背后的商業(yè)情報(bào)供決策者參考。這里的數(shù)據(jù)發(fā)掘主要指涉及多張表的大范圍的數(shù)據(jù)聚合和關(guān)聯(lián)的復(fù)雜查詢。 使用數(shù)據(jù)倉(cāng)庫(kù),通過(guò)某個(gè)數(shù)據(jù)轉(zhuǎn)換(ETL)的過(guò)程,業(yè)務(wù)運(yùn)營(yíng)數(shù)來(lái)自:百科華為云計(jì)算 云知識(shí) 數(shù)據(jù)倉(cāng)庫(kù)服務(wù)快照功能 數(shù)據(jù)倉(cāng)庫(kù)服務(wù)快照功能 時(shí)間:2020-11-23 11:07:48 本視頻主要為您介紹華為云數(shù)據(jù)倉(cāng)庫(kù)服務(wù)快照功能的操作教程指導(dǎo)。 場(chǎng)景描述: 快照是DWS集群在某一時(shí)間點(diǎn)的完整備份,記錄了這一時(shí)刻指定集群的所有配置數(shù)據(jù)和業(yè)務(wù)數(shù)據(jù)。 用戶可以來(lái)自:百科由企業(yè)擁有或者控制的,能夠?yàn)槠髽I(yè)帶來(lái)未來(lái)經(jīng)濟(jì)利益的,以物理或電子的方式記錄的數(shù)據(jù)資源。在企業(yè)中并非所有的數(shù)據(jù)都構(gòu)成數(shù)據(jù)資產(chǎn),數(shù)據(jù)資產(chǎn)是能夠?yàn)槠髽I(yè)產(chǎn)生價(jià)值的數(shù)據(jù)資源。 元數(shù)據(jù) 元數(shù)據(jù)是關(guān)于數(shù)據(jù)的組織、數(shù)據(jù)域及其關(guān)系的信息,簡(jiǎn)言之,元數(shù)據(jù)就是關(guān)于數(shù)據(jù)的數(shù)據(jù)。元數(shù)據(jù)包括元數(shù)據(jù)實(shí)體和元數(shù)據(jù)元素。來(lái)自:百科
- 一篇文章搞懂?dāng)?shù)據(jù)倉(cāng)庫(kù):總線架構(gòu)、一致性維度、一致性事實(shí)
- 數(shù)據(jù)倉(cāng)庫(kù)之維度建模介紹-- 未寫(xiě)完,待更新
- 大數(shù)據(jù)面試題——數(shù)據(jù)倉(cāng)庫(kù)
- 金魚(yú)哥戲說(shuō)RHCE認(rèn)證:管理變量和事實(shí)--管理事實(shí)和魔法變量
- 一篇文章搞懂?dāng)?shù)據(jù)倉(cāng)庫(kù):維度表(設(shè)計(jì)原則、設(shè)計(jì)方法)
- 【云享讀書(shū)會(huì)-數(shù)據(jù)倉(cāng)庫(kù)工具箱】DAY01 數(shù)據(jù)倉(cāng)庫(kù)、商業(yè)智能及維度建模初步
- Ansible 實(shí)踐之委派任務(wù)和事實(shí)
- 數(shù)據(jù)倉(cāng)庫(kù)架構(gòu):星型模型和雪花模型的選擇
- 使用 Hive 構(gòu)建數(shù)據(jù)倉(cāng)庫(kù)
- 金魚(yú)哥說(shuō)Ansible:第四章 管理變量和事實(shí)----管理事實(shí)和魔法變量
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù)GaussDB(DWS)學(xué)習(xí)與資源_數(shù)據(jù)倉(cāng)庫(kù)培訓(xùn)課程_數(shù)據(jù)倉(cāng)庫(kù)視頻教程
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS入門(mén)
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS功能
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS資源
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS定價(jià)
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) GaussDB(DWS)數(shù)據(jù)導(dǎo)入導(dǎo)出_數(shù)據(jù)倉(cāng)庫(kù)數(shù)據(jù)導(dǎo)入導(dǎo)出工具
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù)應(yīng)用場(chǎng)景_數(shù)據(jù)倉(cāng)庫(kù)服務(wù)客戶案例_GaussDB(DWS)
- 機(jī)場(chǎng)主題庫(kù)
- 教育主題庫(kù)