- 數(shù)據(jù)倉(cāng)庫(kù)的粒度模型 內(nèi)容精選 換一換
-
通過(guò)實(shí)操最終得到AI成功識(shí)別人車(chē)的結(jié)果。 實(shí)驗(yàn)摘要 1.準(zhǔn)備環(huán)境 2.創(chuàng)建 OBS 桶和目錄 3.拷貝數(shù)據(jù)集到OBS桶 4.創(chuàng)建訓(xùn)練作業(yè) 5.模型導(dǎo)入 6.模型部署 7.發(fā)起檢測(cè) 華為云 面向未來(lái)的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)字化成功的關(guān)鍵是以云原生的思維踐行云原生,全數(shù)字化、全云化、AI驅(qū)動(dòng),一切皆服務(wù)。來(lái)自:百科課程簡(jiǎn)介 本課程主要內(nèi)容包括:AI如何滿足定制化需求、從Idea到落地開(kāi)發(fā)者所面臨的挑戰(zhàn)、極“快”致“簡(jiǎn)單”的模型訓(xùn)練。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí)使學(xué)員掌握AI模型訓(xùn)練原理及實(shí)現(xiàn)過(guò)程。 課程大綱 第1節(jié) 導(dǎo)讀&往期內(nèi)容回顧 第2節(jié) AI開(kāi)發(fā)痛點(diǎn)分析 第3節(jié) ModelArts介紹 第4節(jié)來(lái)自:百科
- 數(shù)據(jù)倉(cāng)庫(kù)的粒度模型 相關(guān)內(nèi)容
-
下面我們將從資產(chǎn)建模、高效存儲(chǔ)、時(shí)序分析三個(gè)方面進(jìn)行展開(kāi)介紹: 資產(chǎn)模型 構(gòu)建資產(chǎn)模型是充分“理解”物聯(lián)網(wǎng)數(shù)據(jù)的基礎(chǔ)?,F(xiàn)實(shí)世界的設(shè)備不是離散的,而是具有空間、組織、人等復(fù)雜關(guān)系與上下文存在的。如何打通物理世界與數(shù)字世界的關(guān)聯(lián),如何更好的理解設(shè)備從而快捷高效地分析數(shù)據(jù),成為物聯(lián)網(wǎng)企業(yè)急需的基礎(chǔ)業(yè)務(wù)。 不同于通用型大數(shù)據(jù)來(lái)自:百科細(xì)粒度授權(quán)策略是 統(tǒng)一身份認(rèn)證 服務(wù)( IAM )提供的一種描述一組權(quán)限集的語(yǔ)音,它可以精確地描述被授權(quán)的資源集和操作集。 創(chuàng)建用戶(hù)并將用戶(hù)加入用戶(hù)組:安全管理員創(chuàng)建用戶(hù)并根據(jù)用戶(hù)職責(zé)將用戶(hù)加入到對(duì)應(yīng)的用戶(hù)組中。 【華為云】視頻教程 視頻教程匯聚華為云云服務(wù)所有介紹視頻和操作視頻,通過(guò)專(zhuān)家有聲講解及實(shí)來(lái)自:百科
- 數(shù)據(jù)倉(cāng)庫(kù)的粒度模型 更多內(nèi)容
-
基于行業(yè)領(lǐng)域知識(shí)庫(kù)快速構(gòu)建數(shù)據(jù)中臺(tái) 通過(guò)應(yīng)用華為在企業(yè)業(yè)務(wù)領(lǐng)域積累的豐富的行業(yè)領(lǐng)域模型和算法,幫助企業(yè)構(gòu)建數(shù)據(jù)中臺(tái),快速提升數(shù)據(jù)運(yùn)營(yíng)能力。 優(yōu)勢(shì) 多行業(yè)支持 覆蓋政務(wù)/稅務(wù)/城市/交通/園區(qū)等各行業(yè)。 標(biāo)準(zhǔn)規(guī)范支持 支持分層結(jié)構(gòu)的行業(yè)數(shù)據(jù)標(biāo)準(zhǔn)。 領(lǐng)域模型豐富 支持包含人員/組織/事件/時(shí)空/車(chē)輛/資來(lái)自:百科缺少一站式的大屏來(lái)監(jiān)控應(yīng)用實(shí)時(shí)運(yùn)行情況,缺少智能告警、自動(dòng)恢復(fù)措施 計(jì)算資源的高峰需求 AI模型往往需要大量的計(jì)算資源,特別是在處理大規(guī)模數(shù)據(jù)集訓(xùn)練和推理時(shí),需要極強(qiáng)的彈性和極快的啟動(dòng)速度面對(duì)流量洪峰,AI應(yīng)用能否高可用高性能的穩(wěn)定運(yùn)行?傳統(tǒng)服務(wù)器可能難以應(yīng)對(duì)瞬時(shí)的高負(fù)載 如何簡(jiǎn)單化應(yīng)用運(yùn)維來(lái)自:專(zhuān)題依托這些公共模型快速實(shí)現(xiàn),從而專(zhuān)注于業(yè)務(wù)邏輯的創(chuàng)新與優(yōu)化。 數(shù)據(jù)模型 數(shù)據(jù)模型類(lèi)似于編程語(yǔ)言中的數(shù)據(jù)結(jié)構(gòu),在API設(shè)計(jì)時(shí)主要應(yīng)用于 “返回響應(yīng)”和json/xml類(lèi)型的“Body參數(shù)”。在設(shè)計(jì)API的請(qǐng)求體或響應(yīng)內(nèi)容時(shí),開(kāi)發(fā)者可直接引入公共的數(shù)據(jù)模型,實(shí)現(xiàn)數(shù)據(jù)結(jié)構(gòu)的即時(shí)復(fù)用。此外來(lái)自:專(zhuān)題AI應(yīng)用來(lái)源包括:自動(dòng)學(xué)習(xí)中構(gòu)建模型生成、Workflow中構(gòu)建的模型生成、開(kāi)發(fā)環(huán)境Notebook中調(diào)試保存的鏡像導(dǎo)入、訓(xùn)練作業(yè)訓(xùn)練完成的模型導(dǎo)入、本地構(gòu)建推理鏡像并上傳至SWR導(dǎo)入、本地準(zhǔn)備的模型包上傳至OBS導(dǎo)入、ModelArts平臺(tái)提供的模型模板導(dǎo)入、AI Gellary市場(chǎng)訂閱的模型及從其他EI云服務(wù)訂閱AI應(yīng)用等。來(lái)自:專(zhuān)題下面我們將從資產(chǎn)建模、高效存儲(chǔ)、時(shí)序分析三個(gè)方面進(jìn)行展開(kāi)介紹: 資產(chǎn)模型 構(gòu)建資產(chǎn)模型是充分“理解”物聯(lián)網(wǎng)數(shù)據(jù)的基礎(chǔ)?,F(xiàn)實(shí)世界的設(shè)備不是離散的,而是具有空間、組織、人等復(fù)雜關(guān)系與上下文存在的。如何打通物理世界與數(shù)字世界的關(guān)聯(lián),如何更好的理解設(shè)備從而快捷高效地分析數(shù)據(jù),成為物聯(lián)網(wǎng)企業(yè)急需的基礎(chǔ)業(yè)務(wù)。 不同于通用型大數(shù)據(jù)來(lái)自:百科“學(xué)好數(shù)據(jù)庫(kù),玩轉(zhuǎn)IT都不怕”——面試官心中的最佳數(shù)據(jù)庫(kù)人才模型 “學(xué)好數(shù)據(jù)庫(kù),玩轉(zhuǎn)IT都不怕”——面試官心中的最佳數(shù)據(jù)庫(kù)人才模型 時(shí)間:2021-04-27 16:06:53 內(nèi)容簡(jiǎn)介: 數(shù)據(jù)庫(kù)是軟件行業(yè)的掌上明珠,各行業(yè)都離不開(kāi)數(shù)據(jù)庫(kù),在如此重要的行業(yè),人才卻是非常稀缺的,據(jù)統(tǒng)計(jì),全球數(shù)據(jù)庫(kù)人才來(lái)自:百科最小化的安全管控要求。 策略:IAM最新提供的一種細(xì)粒度授權(quán)的能力,可以精確到具體服務(wù)的操作、資源以及請(qǐng)求條件等?;诓呗?span style='color:#C7000B'>的授權(quán)是一種更加靈活的授權(quán)方式,能夠滿足企業(yè)對(duì)權(quán)限最小化的安全管控要求。例如:針對(duì)E CS 服務(wù),管理員能夠控制IAM用戶(hù)僅能對(duì)某一類(lèi)云服務(wù)器資源進(jìn)行指定的管理操來(lái)自:專(zhuān)題模型調(diào)優(yōu)利器:ModelArts模型評(píng)估診斷 ModelArts模型評(píng)估/診斷功能針對(duì)不同類(lèi)型模型的評(píng)估任務(wù),提供相應(yīng)的評(píng)估指標(biāo)。在展示評(píng)估結(jié)果的同時(shí),會(huì)根據(jù)不同的數(shù)據(jù)特征對(duì)模型進(jìn)行詳細(xì)的評(píng)估,獲得每個(gè)數(shù)據(jù)特征對(duì)評(píng)估指標(biāo)的敏感度,并給出優(yōu)化建議。 數(shù)據(jù)倉(cāng)庫(kù) 服務(wù)的“千里眼、順風(fēng)耳”來(lái)自:專(zhuān)題安全可靠的在線數(shù)據(jù)倉(cāng)庫(kù)服務(wù),為用戶(hù)提供海量數(shù)據(jù)的存儲(chǔ)、挖掘和分析能力。 助力某高校打破數(shù)據(jù)孤島,實(shí)現(xiàn)數(shù)據(jù)綜合分析,性能提升10倍 客戶(hù)痛點(diǎn): 【數(shù)據(jù)分散】:現(xiàn)有業(yè)務(wù)系統(tǒng)部署在不同環(huán)境,包括華為云和用戶(hù)本地IDC,不能統(tǒng)一分析; 【數(shù)據(jù)量大】:數(shù)據(jù)量不斷增大,查詢(xún)性能下降; 【業(yè)務(wù)來(lái)自:百科安全云腦 _自定義告警模型 安全云腦的威脅運(yùn)營(yíng)功能提供豐富的威脅檢測(cè)模型,幫助您從海量的安全日志中,發(fā)現(xiàn)威脅、生成告警;同時(shí),提供豐富的安全響應(yīng)劇本,幫助您對(duì)告警進(jìn)行自動(dòng)研判、處置,并對(duì)安全防線和安全配置自動(dòng)加固。 威脅運(yùn)營(yíng)中的智能建模支持利用模型對(duì)管道中的日志數(shù)據(jù)進(jìn)行掃描,如果不在模型設(shè)置范圍內(nèi)容,將產(chǎn)生告警提示。來(lái)自:專(zhuān)題大數(shù)據(jù)是人類(lèi)進(jìn)入互聯(lián)網(wǎng)時(shí)代以來(lái)面臨的一個(gè)巨大問(wèn)題:社會(huì)生產(chǎn)生活產(chǎn)生的數(shù)據(jù)量越來(lái)越大,數(shù)據(jù)種類(lèi)越來(lái)越多,數(shù)據(jù)產(chǎn)生的速度越來(lái)越快。傳統(tǒng)的數(shù)據(jù)處理技術(shù),比如說(shuō)單機(jī)存儲(chǔ),關(guān)系數(shù)據(jù)庫(kù)已經(jīng)無(wú)法解決這些新的大數(shù)據(jù)問(wèn)題。為解決以上大數(shù)據(jù)處理問(wèn)題,Apache基金會(huì)推出了Hadoop大數(shù)據(jù)處理的開(kāi)源解決方案。Ha來(lái)自:專(zhuān)題
- 鎖的粒度
- 數(shù)據(jù)倉(cāng)庫(kù)架構(gòu):星型模型和雪花模型的選擇
- 數(shù)據(jù)倉(cāng)庫(kù)中數(shù)據(jù)模型以及ETL算法
- 系統(tǒng)拆分粒度
- 數(shù)據(jù)庫(kù)粒度是什么意思?有什么用?基本模型有哪些?
- 【DBMS 數(shù)據(jù)庫(kù)管理系統(tǒng)】數(shù)據(jù)倉(cāng)庫(kù) 數(shù)據(jù)組織 ( 數(shù)據(jù)組織級(jí)別 | 元數(shù)據(jù) | 粒度 | 分割 | 數(shù)據(jù)組織形式 )
- 數(shù)據(jù)倉(cāng)庫(kù)之維度建模介紹-- 未寫(xiě)完,待更新
- 淺談數(shù)據(jù)中臺(tái)
- 【云駐共創(chuàng)】華為大數(shù)據(jù)開(kāi)發(fā)平臺(tái) DataFactory 行業(yè)應(yīng)用典型案例
- 5分鐘讀懂?dāng)?shù)倉(cāng)分層(深入淺出,通俗易懂,建議收藏)
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù)GaussDB(DWS)學(xué)習(xí)與資源_數(shù)據(jù)倉(cāng)庫(kù)培訓(xùn)課程_數(shù)據(jù)倉(cāng)庫(kù)視頻教程
- 湖倉(cāng)構(gòu)建
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS入門(mén)
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS功能
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS資源
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS定價(jià)
- 華為云數(shù)據(jù)湖探索服務(wù) DLI
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) GaussDB(DWS)數(shù)據(jù)導(dǎo)入導(dǎo)出_數(shù)據(jù)倉(cāng)庫(kù)數(shù)據(jù)導(dǎo)入導(dǎo)出工具
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù)應(yīng)用場(chǎng)景_數(shù)據(jù)倉(cāng)庫(kù)服務(wù)客戶(hù)案例_GaussDB(DWS)