- 傳統(tǒng)數(shù)據(jù)倉庫hive 內(nèi)容精選 換一換
-
華為云計算 云知識 云硬盤應(yīng)用場景: 數(shù)據(jù)倉庫 云硬盤應(yīng)用場景:數(shù)據(jù)倉庫 時間:2021-03-23 19:41:16 云硬盤 數(shù)據(jù)倉庫是數(shù)據(jù)讀密集型的應(yīng)用場景,典型例子如oracle RAC、SAP HANA等。傳統(tǒng)企業(yè)核心數(shù)據(jù)庫上云往往會面臨性能、可靠性等各方面的問題。例如oracle來自:百科來自:專題
- 傳統(tǒng)數(shù)據(jù)倉庫hive 相關(guān)內(nèi)容
-
數(shù)據(jù)倉庫服務(wù)_SQL on Anywhere 數(shù)據(jù)倉庫服務(wù)GaussDB(DWS)_SQL on Anywhere 華為云數(shù)據(jù)倉庫服務(wù)-SQL on Anywhere 華為云數(shù)據(jù)倉庫服務(wù)-SQL on Anywhere 數(shù)據(jù)倉庫服務(wù)(Data Warehouse Service,來自:專題[ 免費(fèi)體驗(yàn)中心 ]免費(fèi)領(lǐng)取體驗(yàn)產(chǎn)品,快速開啟云上之旅免費(fèi) 最新文章 OLTP和OLAP的比較 數(shù)據(jù)倉庫DWS應(yīng)用案例 數(shù)據(jù)處理耗時從天級縮短至小時級 數(shù)據(jù)倉庫DWS助力某高校打破數(shù)據(jù)孤島實(shí)現(xiàn)數(shù)據(jù)綜合分析案例 數(shù)據(jù)倉庫DWS助力終端消費(fèi)云冷熱數(shù)據(jù)關(guān)聯(lián)分析 數(shù)據(jù)倉庫DWS提升數(shù)據(jù)分析性能實(shí)現(xiàn)分析決策一體化案例來自:百科
- 傳統(tǒng)數(shù)據(jù)倉庫hive 更多內(nèi)容
-
TeraData數(shù)據(jù)倉庫架構(gòu)及特點(diǎn)介紹 TeraData數(shù)據(jù)倉庫架構(gòu)及特點(diǎn)介紹 時間:2021-03-03 11:43:26 數(shù)據(jù)倉庫 數(shù)據(jù)庫 Teradata數(shù)據(jù)倉庫擁有全球領(lǐng)先的技術(shù),其主要軟件和硬件產(chǎn)品包括:Teradata數(shù)據(jù)庫、Teradata數(shù)據(jù)倉庫軟件、企業(yè)數(shù)據(jù)倉庫、動態(tài)企業(yè)數(shù)據(jù)倉庫、數(shù)據(jù)倉庫專用平臺。來自:百科。 上述三種傳統(tǒng)企業(yè)數(shù)據(jù)分析平臺,現(xiàn)在都可以平滑演進(jìn)到 FusionInsight MRS。 ▎FusionInsight MRS“一湖+多樣集群+數(shù)據(jù)智能”分層建設(shè) FusionInsight MRS通過“一湖+多樣集群+數(shù)據(jù)智能”分層建設(shè),有效整合傳統(tǒng)大數(shù)據(jù)、傳統(tǒng)數(shù)倉、湖外建倉來自:百科支持從SFTP/FTP服務(wù)器導(dǎo)入數(shù)據(jù)到HDFS/ OBS 、HBase表、Phoenix表、Hive表 支持從HDFS/OBS、HBase表、Phoenix表導(dǎo)出數(shù)據(jù)到SFTP服務(wù)器 支持從關(guān)系型數(shù)據(jù)庫導(dǎo)入數(shù)據(jù)到HBase表、Phoenix表、Hive表 支持從HBase表、Phoenix表導(dǎo)出數(shù)據(jù)到關(guān)系型數(shù)據(jù)庫來自:專題[ 免費(fèi)體驗(yàn) 中心]免費(fèi)領(lǐng)取體驗(yàn)產(chǎn)品,快速開啟云上之旅免費(fèi) 最新文章 OLTP和OLAP的比較 數(shù)據(jù)倉庫DWS應(yīng)用案例 數(shù)據(jù)處理耗時從天級縮短至小時級 數(shù)據(jù)倉庫DWS助力某高校打破數(shù)據(jù)孤島實(shí)現(xiàn)數(shù)據(jù)綜合分析案例 數(shù)據(jù)倉庫DWS助力終端消費(fèi)云冷熱數(shù)據(jù)關(guān)聯(lián)分析 數(shù)據(jù)倉庫DWS提升數(shù)據(jù)分析性能實(shí)現(xiàn)分析決策一體化案例來自:百科數(shù)據(jù)組件,支持 數(shù)據(jù)湖 、數(shù)據(jù)倉庫、BI、AI融合等能力。 云原生數(shù)據(jù)湖MRS(MapReduce Service)為客戶提供Hudi、ClickHouse、Spark、Flink、Kafka、HBase等Hadoop生態(tài)的高性能大數(shù)據(jù)組件,支持?jǐn)?shù)據(jù)湖、數(shù)據(jù)倉庫、BI、AI融合等能力。來自:專題Spark SQL 數(shù)據(jù)治理中心 DataArts Studio MRS Hive SQL 通過MRS Hive SQL節(jié)點(diǎn)執(zhí)行數(shù)據(jù)開發(fā)模塊中預(yù)先定義的Hive SQL腳本。 數(shù)據(jù)開發(fā) 數(shù)據(jù)治理 中心 作業(yè)節(jié)點(diǎn)MRS Hive SQL 數(shù)據(jù)治理中心 DataArts Studio MRS Presto來自:專題我的數(shù)據(jù) 通過我的數(shù)據(jù)模塊創(chuàng)建指向您的數(shù)據(jù)源的連接配置,支持如下數(shù)據(jù)源: 對象存儲服務(wù)(OBS) 數(shù)據(jù)倉庫服務(wù)(DWS) 數(shù)據(jù)湖探索 ( DLI ) MapReduce服務(wù) (MRS Hive) MapReduce服務(wù)(MRS SparkSQL) 云數(shù)據(jù)庫MySQL 云數(shù)據(jù)庫 PostgreSQL來自:百科類信息資源。 數(shù)據(jù)倉庫和數(shù)據(jù)庫的主要區(qū)別: 1、數(shù)據(jù)庫是面向事務(wù)的設(shè)計,數(shù)據(jù)倉庫是面向主題設(shè)計的。 2、數(shù)據(jù)庫一般存儲在線交易數(shù)據(jù),數(shù)據(jù)倉庫存儲的一般是歷史數(shù)據(jù)。 3、數(shù)據(jù)庫設(shè)計是盡量避免冗余,數(shù)據(jù)倉庫在設(shè)計是有意引入冗余。 4、數(shù)據(jù)庫是為捕獲數(shù)據(jù)而設(shè)計,數(shù)據(jù)倉庫是為分析數(shù)據(jù)而設(shè)計。來自:百科
- 使用 Hive 構(gòu)建數(shù)據(jù)倉庫
- 數(shù)據(jù)倉庫技術(shù)與Hive入門
- 大數(shù)據(jù)倉庫之Hive的部署
- 七十八、Hive數(shù)據(jù)倉庫實(shí)際操作(操作測試)
- 《深入了解Hive SQL:與傳統(tǒng)SQL的差異探秘》
- hive數(shù)據(jù)倉庫的設(shè)計,項目中分了幾層,都有什么
- 一文說透傳統(tǒng)數(shù)據(jù)庫 VS 數(shù)據(jù)倉庫
- 一幅長文細(xì)學(xué)華為MRS大數(shù)據(jù)開發(fā)(三)——Hive
- 深度解析之Hive原理
- 從0到1搭建大數(shù)據(jù)平臺之計算存儲系統(tǒng)
- 數(shù)據(jù)倉庫服務(wù)GaussDB(DWS)學(xué)習(xí)與資源_數(shù)據(jù)倉庫培訓(xùn)課程_數(shù)據(jù)倉庫視頻教程
- 數(shù)據(jù)倉庫服務(wù) DWS
- 數(shù)據(jù)倉庫服務(wù) DWS入門
- 數(shù)據(jù)倉庫服務(wù) DWS功能
- 數(shù)據(jù)倉庫服務(wù) DWS資源
- 數(shù)據(jù)倉庫服務(wù) DWS定價
- 數(shù)據(jù)倉庫服務(wù)應(yīng)用場景_數(shù)據(jù)倉庫服務(wù)客戶案例_GaussDB(DWS)
- 數(shù)據(jù)倉庫服務(wù) GaussDB(DWS)數(shù)據(jù)導(dǎo)入導(dǎo)出_數(shù)據(jù)倉庫數(shù)據(jù)導(dǎo)入導(dǎo)出工具
- 湖倉構(gòu)建
- 數(shù)據(jù)倉庫服務(wù) GaussDB(DWS)數(shù)據(jù)備份恢復(fù)