- hive數(shù)據(jù)倉(cāng)庫(kù)特點(diǎn) 內(nèi)容精選 換一換
-
華為云計(jì)算 云知識(shí) 云硬盤應(yīng)用場(chǎng)景: 數(shù)據(jù)倉(cāng)庫(kù) 云硬盤應(yīng)用場(chǎng)景:數(shù)據(jù)倉(cāng)庫(kù) 時(shí)間:2021-03-23 19:41:16 云硬盤 數(shù)據(jù)倉(cāng)庫(kù)是數(shù)據(jù)讀密集型的應(yīng)用場(chǎng)景,典型例子如oracle RAC、SAP HANA等。傳統(tǒng)企業(yè)核心數(shù)據(jù)庫(kù)上云往往會(huì)面臨性能、可靠性等各方面的問題。例如oracle來自:百科云知識(shí) DRS在線遷移能力特點(diǎn) DRS在線遷移能力特點(diǎn) 時(shí)間:2021-05-31 16:13:23 數(shù)據(jù)庫(kù) DRS的在線遷移能力,是指支持通過多種網(wǎng)絡(luò)鏈路,實(shí)現(xiàn)跨云平臺(tái) 數(shù)據(jù)庫(kù)遷移 、云下數(shù)據(jù)庫(kù)遷移上云或云上跨Region的數(shù)據(jù)庫(kù)遷移等多種業(yè)務(wù)場(chǎng)景。 特點(diǎn):通過增量遷移技術(shù),能夠最來自:百科
- hive數(shù)據(jù)倉(cāng)庫(kù)特點(diǎn) 相關(guān)內(nèi)容
-
云知識(shí) GaussDB (for Mongo)的產(chǎn)品特點(diǎn) GaussDB(for Mongo)的產(chǎn)品特點(diǎn) 時(shí)間:2021-06-17 16:47:49 數(shù)據(jù)庫(kù) GaussDB(for Mongo)具有存算分離、極致可用、海量存儲(chǔ)等特點(diǎn)。 存算分離:存儲(chǔ)層采用DFV高性能分布式存儲(chǔ),計(jì)算資源與存儲(chǔ)資源按需獨(dú)立擴(kuò)展;來自:百科、湖倉(cāng)一站式SQL融合分析。其能夠支持跨源(多種數(shù)據(jù)源,如Hive,HBase,GaussDB(DWS),ClickHouse等),跨域(多個(gè)地域或數(shù)據(jù)中心)的快速聯(lián)合查詢,尤其適用于Hadoop集群( MRS )的Hive、Hudi數(shù)據(jù)的交互式快速查詢場(chǎng)景。 HetuEngine結(jié)構(gòu)來自:專題
- hive數(shù)據(jù)倉(cāng)庫(kù)特點(diǎn) 更多內(nèi)容
-
Spark SQL 數(shù)據(jù)治理中心 DataArts Studio MRS Hive SQL 通過MRS Hive SQL節(jié)點(diǎn)執(zhí)行數(shù)據(jù)開發(fā)模塊中預(yù)先定義的Hive SQL腳本。 數(shù)據(jù)開發(fā) 數(shù)據(jù)治理 中心 作業(yè)節(jié)點(diǎn)MRS Hive SQL 數(shù)據(jù)治理中心 DataArts Studio MRS Presto來自:專題,將數(shù)據(jù)進(jìn)行結(jié)構(gòu)和邏輯的轉(zhuǎn)換,轉(zhuǎn)化成滿足業(yè)務(wù)目標(biāo)的數(shù)據(jù)模型。 數(shù)據(jù)分析 基于預(yù)設(shè)的數(shù)據(jù)模型,使用易用SQL的數(shù)據(jù)分析,用戶可以選擇Hive(數(shù)據(jù)倉(cāng)庫(kù)),SparkSQL以及Presto交互式查詢引擎。 數(shù)據(jù)呈現(xiàn)調(diào)度 用于數(shù)據(jù)分析結(jié)果的呈現(xiàn),并與 數(shù)據(jù)湖 工廠(DLF)集成,提供一站式來自:百科分析場(chǎng)景。 數(shù)據(jù)倉(cāng)庫(kù)遷移 數(shù)據(jù)倉(cāng)庫(kù)是企業(yè)的重要數(shù)據(jù)分析系統(tǒng),隨著業(yè)務(wù)量的增長(zhǎng),自建數(shù)倉(cāng)性能逐漸不能滿足實(shí)際要求,同時(shí)擴(kuò)展性差、成本高,也使擴(kuò)容極為困難。DWS作為云上企業(yè)級(jí)數(shù)據(jù)倉(cāng)庫(kù),具備高性能、低成本、易擴(kuò)展等特性,滿足大數(shù)據(jù)時(shí)代企業(yè)數(shù)據(jù)倉(cāng)庫(kù)業(yè)務(wù)訴求。 圖1數(shù)據(jù)倉(cāng)庫(kù)遷移 優(yōu)勢(shì) 平滑遷移來自:百科華為云計(jì)算 云知識(shí) 數(shù)據(jù)庫(kù)架構(gòu)特點(diǎn)對(duì)比 數(shù)據(jù)庫(kù)架構(gòu)特點(diǎn)對(duì)比 時(shí)間:2021-07-01 10:14:09 數(shù)據(jù)庫(kù) 數(shù)據(jù)系統(tǒng) 云數(shù)據(jù)庫(kù) 常見的幾種數(shù)據(jù)庫(kù)架構(gòu)的從高可用性、讀寫性能、數(shù)據(jù)一致性及可擴(kuò)展性幾個(gè)特點(diǎn)進(jìn)行比較。 文中課程 更多精彩課堂、微認(rèn)證、沙箱實(shí)驗(yàn),盡在華為云學(xué)院 數(shù)據(jù)庫(kù)介紹來自:百科數(shù)據(jù)庫(kù)中數(shù)據(jù)的特點(diǎn) 數(shù)據(jù)庫(kù)中數(shù)據(jù)的特點(diǎn) 時(shí)間:2021-05-20 15:35:05 數(shù)據(jù)庫(kù) 數(shù)據(jù)系統(tǒng) 數(shù)據(jù)管理 數(shù)據(jù)是描述事務(wù)的符號(hào)記錄,可以是數(shù)字,也可以是文字、圖形、圖像、音頻、視頻等,有多種表現(xiàn)形式。數(shù)據(jù)庫(kù)是存放數(shù)據(jù)的倉(cāng)庫(kù),是大量數(shù)據(jù)的集合。 存放在數(shù)據(jù)庫(kù)中數(shù)據(jù)的特點(diǎn) 1、永久來自:百科支持從SFTP/FTP服務(wù)器導(dǎo)入數(shù)據(jù)到HDFS/ OBS 、HBase表、Phoenix表、Hive表 支持從HDFS/OBS、HBase表、Phoenix表導(dǎo)出數(shù)據(jù)到SFTP服務(wù)器 支持從關(guān)系型數(shù)據(jù)庫(kù)導(dǎo)入數(shù)據(jù)到HBase表、Phoenix表、Hive表 支持從HBase表、Phoenix表導(dǎo)出數(shù)據(jù)到關(guān)系型數(shù)據(jù)庫(kù)來自:專題華為云計(jì)算 云知識(shí) 數(shù)據(jù)倉(cāng)庫(kù)發(fā)展現(xiàn)狀及發(fā)展趨勢(shì) 數(shù)據(jù)倉(cāng)庫(kù)發(fā)展現(xiàn)狀及發(fā)展趨勢(shì) 時(shí)間:2021-03-03 14:09:48 數(shù)據(jù)倉(cāng)庫(kù) 數(shù)據(jù)倉(cāng)庫(kù)是指從業(yè)務(wù)數(shù)據(jù)中創(chuàng)建信息數(shù)據(jù)庫(kù),并針對(duì)決策和分析進(jìn)行優(yōu)化。華為云數(shù)據(jù)倉(cāng)庫(kù)服務(wù)實(shí)時(shí)、簡(jiǎn)單、安全可信的企業(yè)級(jí)融合數(shù)據(jù)倉(cāng)庫(kù),可借助DWS Expr來自:百科[ 免費(fèi)體驗(yàn)中心 ]免費(fèi)領(lǐng)取體驗(yàn)產(chǎn)品,快速開啟云上之旅免費(fèi) 最新文章 OLTP和OLAP的比較 數(shù)據(jù)倉(cāng)庫(kù)DWS應(yīng)用案例 數(shù)據(jù)處理耗時(shí)從天級(jí)縮短至小時(shí)級(jí) 數(shù)據(jù)倉(cāng)庫(kù)DWS助力某高校打破數(shù)據(jù)孤島實(shí)現(xiàn)數(shù)據(jù)綜合分析案例 數(shù)據(jù)倉(cāng)庫(kù)DWS助力終端消費(fèi)云冷熱數(shù)據(jù)關(guān)聯(lián)分析 數(shù)據(jù)倉(cāng)庫(kù)DWS提升數(shù)據(jù)分析性能實(shí)現(xiàn)分析決策一體化案例來自:百科系統(tǒng)面臨的基本挑戰(zhàn)并未發(fā)生重大變化。本課程包含數(shù)據(jù)倉(cāng)庫(kù)、維度建模、事態(tài)表、建模表、總線矩陣、緩慢變化維等多個(gè)數(shù)據(jù)倉(cāng)庫(kù)核心內(nèi)容,適合數(shù)據(jù)倉(cāng)庫(kù)架構(gòu)師、工程師等大數(shù)據(jù)愛好者參與學(xué)習(xí)。 課程目標(biāo) 1.了解數(shù)據(jù)倉(cāng)庫(kù)系統(tǒng)和維度模型: 對(duì)數(shù)據(jù)倉(cāng)庫(kù)和維度模型的基本知識(shí)和建設(shè)方法論 2.了解維度模型:掌握維度表和事實(shí)表的概念和設(shè)計(jì)方法來自:百科華為云計(jì)算 云知識(shí) 云數(shù)據(jù)庫(kù)的特點(diǎn)有哪些 云數(shù)據(jù)庫(kù)的特點(diǎn)有哪些 時(shí)間:2021-06-30 17:10:36 數(shù)據(jù)庫(kù) 數(shù)據(jù)系統(tǒng) NoSQL 云數(shù)據(jù)庫(kù)GaussDB NoSQL 云數(shù)據(jù)庫(kù)是指被優(yōu)化或部署到一個(gè)虛擬計(jì)算環(huán)境中的數(shù)據(jù)庫(kù)。 云數(shù)據(jù)庫(kù)具有以下幾種特點(diǎn): 易 - 易使用易管理,業(yè)務(wù)敏捷上線來自:百科
- 使用 Hive 構(gòu)建數(shù)據(jù)倉(cāng)庫(kù)
- 數(shù)據(jù)倉(cāng)庫(kù)技術(shù)與Hive入門
- 數(shù)據(jù)倉(cāng)庫(kù)(01)什么是數(shù)據(jù)倉(cāng)庫(kù),數(shù)倉(cāng)有什么特點(diǎn)
- 大數(shù)據(jù)倉(cāng)庫(kù)之Hive的部署
- 七十八、Hive數(shù)據(jù)倉(cāng)庫(kù)實(shí)際操作(操作測(cè)試)
- hive數(shù)據(jù)倉(cāng)庫(kù)的設(shè)計(jì),項(xiàng)目中分了幾層,都有什么
- BigData之Hive:Hive數(shù)據(jù)管理的簡(jiǎn)介、下載、案例應(yīng)用之詳細(xì)攻略
- 深度解析之Hive原理
- 我眼中的Hive-你眼中的了?
- 大數(shù)據(jù)新視界 --大數(shù)據(jù)大廠之Hive與大數(shù)據(jù)融合:構(gòu)建強(qiáng)大數(shù)據(jù)倉(cāng)庫(kù)實(shí)戰(zhàn)指南
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) GaussDB(DWS)產(chǎn)品架構(gòu)_技術(shù)特點(diǎn)
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù)GaussDB(DWS)學(xué)習(xí)與資源_數(shù)據(jù)倉(cāng)庫(kù)培訓(xùn)課程_數(shù)據(jù)倉(cāng)庫(kù)視頻教程
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS入門
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS定價(jià)
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS功能
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) DWS資源
- GeminiDB Cassandra 接口
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù)應(yīng)用場(chǎng)景_數(shù)據(jù)倉(cāng)庫(kù)服務(wù)客戶案例_GaussDB(DWS)
- 數(shù)據(jù)倉(cāng)庫(kù)服務(wù) GaussDB(DWS)數(shù)據(jù)導(dǎo)入導(dǎo)出_數(shù)據(jù)倉(cāng)庫(kù)數(shù)據(jù)導(dǎo)入導(dǎo)出工具