- bp神經(jīng)網(wǎng)絡(luò)反向傳播 內(nèi)容精選 換一換
-
網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見(jiàn)的問(wèn)題。 目標(biāo)學(xué)員 需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:描述神經(jīng)網(wǎng)絡(luò)的定義與發(fā)展;熟悉深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)的重要“部件”;熟來(lái)自:百科DL)是機(jī)器學(xué)習(xí)的一種,機(jī)器學(xué)習(xí)是實(shí)現(xiàn)人工智能的必由之路。深度學(xué)習(xí)的概念源于人工神經(jīng)網(wǎng)絡(luò)的研究,包含多個(gè)隱藏層的多層感知器就是深度學(xué)習(xí)結(jié)構(gòu)。深度學(xué)習(xí)通過(guò)組合低層特征形成更抽象的高層代表屬性類別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動(dòng)機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來(lái)解釋說(shuō)明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。來(lái)自:百科
- bp神經(jīng)網(wǎng)絡(luò)反向傳播 相關(guān)內(nèi)容
-
基于NAS的輕量級(jí)神經(jīng)網(wǎng)絡(luò) 第4章 數(shù)據(jù)高效的神經(jīng)網(wǎng)絡(luò)壓縮 第5章 1-bit等價(jià)性研究 華為云 面向未來(lái)的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)字化成功的關(guān)鍵是以云原生的思維踐行云原生,全數(shù)字化、全云化、AI驅(qū)動(dòng),一切皆服務(wù)。 華為云將持續(xù)創(chuàng)新,攜手客戶、合作伙伴和開發(fā)者,致力于來(lái)自:百科算引擎由開發(fā)者進(jìn)行自定義來(lái)完成所需要的具體功能。 通過(guò)流程編排器的統(tǒng)一調(diào)用,整個(gè)深度神經(jīng)網(wǎng)絡(luò)應(yīng)用一般包括四個(gè)引擎:數(shù)據(jù)引擎,預(yù)處理引擎,模型推理引擎以及后處理引擎。 1、數(shù)據(jù)引擎主要準(zhǔn)備神經(jīng)網(wǎng)絡(luò)需要的數(shù)據(jù)集(如MNIST數(shù)據(jù)集)和進(jìn)行相應(yīng)數(shù)據(jù)的處理(如圖片過(guò)濾等),作為后續(xù)計(jì)算引擎的數(shù)據(jù)來(lái)源。來(lái)自:百科
- bp神經(jīng)網(wǎng)絡(luò)反向傳播 更多內(nèi)容
-
子任務(wù),即正向?yàn)?zāi)備和反向災(zāi)備任務(wù),此時(shí)反向災(zāi)備任務(wù)為配置狀態(tài)。 當(dāng)正向?yàn)?zāi)備任務(wù)進(jìn)入“災(zāi)備中”狀態(tài)時(shí)(反向任務(wù)操作列出現(xiàn)編輯),配置并啟動(dòng)反向任務(wù)。 在“多活災(zāi)備管理”頁(yè)面,選擇該災(zāi)備任務(wù)的反向任務(wù),單擊操作列的編輯,進(jìn)入“創(chuàng)建災(zāi)備任務(wù)”頁(yè)面,繼續(xù)完成創(chuàng)建反向任務(wù)。 建議您在主2進(jìn)行驗(yàn)證,滿足預(yù)期后,啟動(dòng)反向任務(wù)。來(lái)自:百科
華為企業(yè)人工智能高級(jí)開發(fā)者培訓(xùn):培訓(xùn)內(nèi)容 國(guó)家名稱縮寫 手機(jī)號(hào)所屬的國(guó)家 神經(jīng)網(wǎng)絡(luò)介紹 策略參數(shù)說(shuō)明:核函數(shù)特征交互神經(jīng)網(wǎng)絡(luò) Grs國(guó)家碼對(duì)照表:DR2:亞非拉(新加坡) 國(guó)家(或地區(qū))碼 地理位置編碼 排序策略:核函數(shù)特征交互神經(jīng)網(wǎng)絡(luò)-PIN 提交排序任務(wù)API:請(qǐng)求消息 國(guó)家碼和地區(qū)碼 解析線路類型:地域線路細(xì)分(全球)來(lái)自:云商店
通過(guò)本課程的學(xué)習(xí),使學(xué)員了解: 1、如何構(gòu)建高效的神經(jīng)網(wǎng)絡(luò)基礎(chǔ)模型。 2、如何學(xué)習(xí)顯著性物體、邊緣等通用屬性。 3、如何利用通用屬性構(gòu)建弱監(jiān)督學(xué)習(xí)模型,并進(jìn)而利用互聯(lián)網(wǎng)數(shù)據(jù)自主完成知識(shí)學(xué)習(xí)。 課程大綱 第1章 什么是開放環(huán)境的自適應(yīng)感知 第2章 面向識(shí)別與理解的神經(jīng)網(wǎng)絡(luò)共性技術(shù) 第3章 通用視覺(jué)基元屬性感知來(lái)自:百科
部署在AI1型服務(wù)器上執(zhí)行的方法。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 本實(shí)驗(yàn)主要介紹基于AI1型 彈性云服務(wù)器 完成黑白圖像上色應(yīng)用開發(fā),通過(guò)該實(shí)驗(yàn)了解將神經(jīng)網(wǎng)絡(luò)模型部署到昇騰310處理器運(yùn)行的一般過(guò)程和方法。 基本要求: 1. 對(duì)業(yè)界主流的深度學(xué)習(xí)框架(Caffe、TensorFlow等)有一定了解。來(lái)自:百科
簽 視頻 OCR 識(shí)別視頻中出現(xiàn)的文字內(nèi)容,包括字幕、彈幕、以及部分自然場(chǎng)景文字和藝術(shù)字等 產(chǎn)品優(yōu)勢(shì) 識(shí)別準(zhǔn)確 采用標(biāo)簽排序?qū)W習(xí)算法與卷積神經(jīng)網(wǎng)絡(luò)算法,識(shí)別精度高,支持實(shí)時(shí)識(shí)別與檢測(cè) 簡(jiǎn)單易用 提供符合RESTful的API訪問(wèn)接口,使用方便,用戶的業(yè)務(wù)系統(tǒng)可快速集成 層次標(biāo)簽 層來(lái)自:百科
- BP反向傳播
- 深度神經(jīng)網(wǎng)絡(luò)(DNN)反向傳播算法(BP)
- 深度神經(jīng)網(wǎng)絡(luò)--3.2 反向傳播
- 卷積神經(jīng)網(wǎng)絡(luò)(CNN)反向傳播算法
- 【深度學(xué)習(xí) | 反向傳播】釋放反向傳播的力量: 讓訓(xùn)練神經(jīng)網(wǎng)絡(luò)變得簡(jiǎn)單
- 【深度學(xué)習(xí) | 反向傳播】釋放反向傳播的力量: 讓訓(xùn)練神經(jīng)網(wǎng)絡(luò)變得簡(jiǎn)單
- 《C++ 賦能神經(jīng)網(wǎng)絡(luò):深入解析前向傳播與反向傳播算法》
- 循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)模型與前向反向傳播算法
- 使用反向傳播算法(back propagation)訓(xùn)練多層神經(jīng)網(wǎng)絡(luò)
- 深度解析:前向傳播、反向傳播與梯度