- bp神經(jīng)網(wǎng)絡(luò)車流量 內(nèi)容精選 換一換
-
解決方案 智慧交通邊緣節(jié)點(diǎn)通過(guò)視頻和雷達(dá)融合分析,智能化算法檢測(cè)道路交通事件(算法云端訓(xùn)練、邊緣執(zhí)行),有效實(shí)時(shí)提供碰撞告警,紅綠燈相位推送,車流量感知及控制等智能服務(wù)。向交通管理者提供交通全息監(jiān)控能力,向車輛提供高精度定位及地圖服務(wù)、交通安全預(yù)警能力,提升駕駛安全和道路通行效率,促進(jìn)來(lái)自:百科部署在AI1型服務(wù)器上執(zhí)行的方法。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 本實(shí)驗(yàn)主要介紹基于AI1型 彈性云服務(wù)器 完成黑白圖像上色應(yīng)用開(kāi)發(fā),通過(guò)該實(shí)驗(yàn)了解將神經(jīng)網(wǎng)絡(luò)模型部署到昇騰310處理器運(yùn)行的一般過(guò)程和方法。 基本要求: 1. 對(duì)業(yè)界主流的深度學(xué)習(xí)框架(Caffe、TensorFlow等)有一定了解。來(lái)自:百科
- bp神經(jīng)網(wǎng)絡(luò)車流量 相關(guān)內(nèi)容
-
建立交通事件,下發(fā)至路側(cè)單元,路側(cè)單元轉(zhuǎn)發(fā)給車載單元。主要場(chǎng)景為車內(nèi)標(biāo)牌、惡劣天氣類事件。 城市/區(qū)域交通實(shí)時(shí)監(jiān)控,覆蓋交通事故數(shù)、聯(lián)接車輛數(shù)、擁堵路段、車型分布、車流量、事故高發(fā)路段排行、在線設(shè)備數(shù)等重要指標(biāo)。 RSU(Road Side Unit,路側(cè)單元)等設(shè)備狀態(tài)實(shí)時(shí)監(jiān)控,幫助企業(yè)隨時(shí)掌握設(shè)備情況,助力設(shè)備故障及時(shí)處理。來(lái)自:百科簽 視頻 OCR 識(shí)別視頻中出現(xiàn)的文字內(nèi)容,包括字幕、彈幕、以及部分自然場(chǎng)景文字和藝術(shù)字等 產(chǎn)品優(yōu)勢(shì) 識(shí)別準(zhǔn)確 采用標(biāo)簽排序?qū)W習(xí)算法與卷積神經(jīng)網(wǎng)絡(luò)算法,識(shí)別精度高,支持實(shí)時(shí)識(shí)別與檢測(cè) 簡(jiǎn)單易用 提供符合RESTful的API訪問(wèn)接口,使用方便,用戶的業(yè)務(wù)系統(tǒng)可快速集成 層次標(biāo)簽 層來(lái)自:百科
- bp神經(jīng)網(wǎng)絡(luò)車流量 更多內(nèi)容
-
更高。 RASR優(yōu)勢(shì): 識(shí)別準(zhǔn)確率:采用最新一代 語(yǔ)音識(shí)別 技術(shù),基于DNN(深層神經(jīng)網(wǎng)絡(luò))技術(shù),大大提高了抗噪性能,使識(shí)別準(zhǔn)確率顯著提升。 識(shí)別速度快:把語(yǔ)言模型,詞典和聲學(xué)模型統(tǒng)一集成為一個(gè)大的神經(jīng)網(wǎng)絡(luò),同時(shí)在工程上進(jìn)行了大量的優(yōu)化,大幅提升解碼速度,使識(shí)別速度在業(yè)內(nèi)處領(lǐng)先地位。來(lái)自:百科
車道空間占有率、車牌、車型等。該服務(wù)可應(yīng)用于路況實(shí)時(shí)分析、信號(hào)燈控制、智慧停車等場(chǎng)景 產(chǎn)品優(yōu)勢(shì) 識(shí)別精準(zhǔn) 精準(zhǔn)檢測(cè)車輛、車道線,精確統(tǒng)計(jì)車流量,檢測(cè)算法不受場(chǎng)景、天氣、車型等因素影響 穩(wěn)定可靠 成功應(yīng)用于各類交通場(chǎng)景,經(jīng)受過(guò)復(fù)雜場(chǎng)景考驗(yàn),對(duì)環(huán)境變化具有較強(qiáng)的魯棒性 簡(jiǎn)單高效 服務(wù)來(lái)自:百科
類、基于場(chǎng)景內(nèi)容或者物體的廣告推薦等功能更加準(zhǔn)確。 圖1 圖像標(biāo)簽 示例圖 名人識(shí)別 利用深度神經(jīng)網(wǎng)絡(luò)模型對(duì)圖片內(nèi)容進(jìn)行檢測(cè),準(zhǔn)確識(shí)別圖像中包含的影視明星及網(wǎng)紅人物。 翻拍識(shí)別 利用深度神經(jīng)網(wǎng)絡(luò)算法判斷條形碼圖片為原始拍攝,還是經(jīng)過(guò)二次翻拍、打印翻拍等手法二次處理的圖片。利用翻拍識(shí)別來(lái)自:百科
實(shí)驗(yàn)指導(dǎo)用戶完成基于華為昇騰彈性云服務(wù)器的圖像分類應(yīng)用。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 1.了解華為昇騰全棧開(kāi)發(fā)工具M(jìn)ind Studio; 2.了解如何利用華為昇騰處理器加速神經(jīng)網(wǎng)絡(luò)推理應(yīng)用; 實(shí)驗(yàn)摘要 1.準(zhǔn)備環(huán)境 2.配置工程 3.關(guān)鍵代碼補(bǔ)充 4.編譯并查看結(jié)果 溫馨提示:詳情信息請(qǐng)以實(shí)驗(yàn)頁(yè)面:https://lab來(lái)自:百科
實(shí)驗(yàn)指導(dǎo)用戶完成基于華為昇騰彈性云服務(wù)器的目標(biāo)檢測(cè)應(yīng)用。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 ① 了解華為昇騰全棧開(kāi)發(fā)工具M(jìn)indStudio; ② 了解如何利用華為昇騰處理器加速神經(jīng)網(wǎng)絡(luò)推理應(yīng)用; 實(shí)驗(yàn)摘要 1.準(zhǔn)備環(huán)境 2.配置工程 3.編寫代碼 4.運(yùn)行并驗(yàn)證 溫馨提示:詳情信息請(qǐng)以實(shí)驗(yàn)頁(yè)面:https://lab.huaweicloud來(lái)自:百科
目前 內(nèi)容審核 包括 內(nèi)容審核-圖像 、 內(nèi)容審核-文本 、 內(nèi)容審核-視頻 。提供了清晰度檢測(cè)、扭曲校正、文本內(nèi)容檢測(cè)、圖像內(nèi)容檢測(cè)和 視頻審核 服務(wù)。 內(nèi)容審核-圖像 圖像內(nèi)容審核,利用深度神經(jīng)網(wǎng)絡(luò)模型對(duì)圖片內(nèi)容進(jìn)行檢測(cè),準(zhǔn)確識(shí)別圖像中的涉政敏感人物、暴恐元素、涉黃內(nèi)容等,幫助業(yè)務(wù)規(guī)避違規(guī)風(fēng)險(xiǎn)。 內(nèi)容審核-文本 文本內(nèi)容審核 ,采用人來(lái)自:百科
2015 03:56:41 GMT\nAuthorization: OBS H4IPJX0TQTHTHEBQQCEC:mKUs/uIPb8BP0ZhvMd4wEy+EbiI=\n" 錯(cuò)誤碼 請(qǐng)參考 錯(cuò)誤碼說(shuō)明。 最新文章 創(chuàng)建浮動(dòng)IPNeutronCreateFloatingIp來(lái)自:百科
本實(shí)驗(yàn)指導(dǎo)用戶在華為云ModelArts平臺(tái)對(duì)預(yù)置的模型進(jìn)行重訓(xùn)練,快速構(gòu)建 人臉識(shí)別 應(yīng)用。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 掌握MXNet AI引擎用法; 掌握基于MXNet構(gòu)建人臉識(shí)別神經(jīng)網(wǎng)絡(luò); 掌握華為云ModelArts SDK創(chuàng)建訓(xùn)練作業(yè)、模型部署和模型測(cè)試; 掌握ModelArts自研分布式訓(xùn)練框架MoXing。 實(shí)驗(yàn)摘要來(lái)自:百科
- BP神經(jīng)網(wǎng)絡(luò)
- BP神經(jīng)網(wǎng)絡(luò)
- BP神經(jīng)網(wǎng)絡(luò)
- RSNNS包 BP神經(jīng)網(wǎng)絡(luò)
- BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)(CNN)
- 多層神經(jīng)網(wǎng)絡(luò)(BP算法)介紹
- 【基礎(chǔ)教程】BP神經(jīng)網(wǎng)絡(luò)
- BP神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)及matlab實(shí)現(xiàn)
- 深度神經(jīng)網(wǎng)絡(luò)(DNN)反向傳播算法(BP)
- 九行代碼完成MATLAB bp神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)