- hadoop數(shù)據(jù)挖掘 內(nèi)容精選 換一換
-
MapReduce服務(wù) MRS MapReduce服務(wù)(MapReduce Service)提供租戶完全可控的企業(yè)級(jí)大數(shù)據(jù)集群云服務(wù),輕松運(yùn)行Hadoop、Spark、HBase、Kafka、Storm等大數(shù)據(jù)組件。包年更優(yōu)惠,買1年只需付10個(gè)月費(fèi)用 產(chǎn)品詳情立即注冊(cè)一元域名華為 云桌面來自:百科主要應(yīng)用于海量結(jié)構(gòu)化數(shù)據(jù)/半結(jié)構(gòu)化數(shù)據(jù)分析、海量多維數(shù)據(jù)聚合/報(bào)表、ETL、Ad-Hoc查詢等場(chǎng)景。 Presto允許查詢的數(shù)據(jù)源包括Hadoop分布式文件系統(tǒng)(HDFS),Hive,HBase,Cassandra,關(guān)系數(shù)據(jù)庫(kù)甚至專有數(shù)據(jù)存儲(chǔ)。一個(gè)Presto查詢可以組合不同數(shù)據(jù)源,執(zhí)行跨數(shù)據(jù)源的數(shù)據(jù)分析。來自:百科
- hadoop數(shù)據(jù)挖掘 相關(guān)內(nèi)容
-
11:07:40 MapReduce服務(wù)(MapReduce Service)提供租戶完全可控的企業(yè)級(jí)一站式大數(shù)據(jù)集群云服務(wù),輕松運(yùn)行Hadoop、Spark、HBase、Kafka、Storm等大數(shù)據(jù)組件。本課程通過深入介紹MRS服務(wù)H CS 環(huán)境的搭建,以及大數(shù)據(jù)分層遷移上云方案來自:百科處理大容量數(shù)據(jù),需要高I/O能力和快速的數(shù)據(jù)交換處理能力的場(chǎng)景。例如MapReduce、Hadoop計(jì)算密集型。 推薦使用磁盤增強(qiáng)型 彈性云服務(wù)器 ,主要適用于需要對(duì)本地存儲(chǔ)上的極大型數(shù)據(jù)集進(jìn)行高性能順序讀寫訪問的工作負(fù)載,例如:Hadoop分布式計(jì)算,大規(guī)模的并行數(shù)據(jù)處理和日志處理應(yīng)用。主要的數(shù)據(jù)存儲(chǔ)是基來自:百科
- hadoop數(shù)據(jù)挖掘 更多內(nèi)容
-
自動(dòng)識(shí)別網(wǎng)絡(luò)圖片內(nèi)的所有文字及其對(duì)應(yīng)位置信息,并能根據(jù)識(shí)別出來的結(jié)果進(jìn)行聯(lián)系人信息的提取,同時(shí)可供進(jìn)一步的數(shù)據(jù)挖掘后處理操作。 自動(dòng)識(shí)別網(wǎng)絡(luò)圖片內(nèi)的所有文字及其對(duì)應(yīng)位置信息,并能根據(jù)識(shí)別出來的結(jié)果進(jìn)行聯(lián)系人信息的提取,同時(shí)可供進(jìn)一步的數(shù)據(jù)挖掘后處理操作。 身份證識(shí)別 自動(dòng)識(shí)別身份證上的全部信息,支持身份證正反面識(shí)來自:專題
處理、模型構(gòu)建、模型部署等工序,同時(shí)支撐知識(shí)圖譜的構(gòu)建和管理功能,配以模型訓(xùn)練場(chǎng),提供訓(xùn)練和運(yùn)行環(huán)境,生成的模型托管于模型倉(cāng)庫(kù),可應(yīng)用于數(shù)據(jù)挖掘,主動(dòng)評(píng)價(jià),智能決策,資源調(diào)配等業(yè)務(wù)場(chǎng)景,對(duì)應(yīng)用層輸出持續(xù)進(jìn)化的算法和模型,為服務(wù)場(chǎng)景提供能力支撐。 此外,該平臺(tái)的數(shù)據(jù)接入功能可以幫助用戶將數(shù)據(jù)從應(yīng)用程序,API來自:專題
提供的服務(wù)。上海音智達(dá)信息技術(shù)有限公司是一家專注于 數(shù)據(jù)治理 、數(shù)據(jù)挖掘與算法、 數(shù)據(jù)可視化 等領(lǐng)域的大數(shù)據(jù)與人工智能公司。該公司長(zhǎng)期關(guān)注世界先進(jìn)技術(shù),并與多家大數(shù)據(jù)軟件廠商合作,提供符合中國(guó)國(guó)情的數(shù)據(jù)分析、數(shù)據(jù)集成、數(shù)據(jù)挖掘、數(shù)據(jù)可視化等大數(shù)據(jù)產(chǎn)品。音智達(dá)還研制和開發(fā)了自有的相關(guān)產(chǎn)品和來自:專題
CDM 任務(wù)基于分布式計(jì)算框架,自動(dòng)將任務(wù)切分為獨(dú)立的子任務(wù)并行執(zhí)行,能夠極大提高數(shù)據(jù)遷移的效率。 多種數(shù)據(jù)源支持 支持?jǐn)?shù)據(jù)庫(kù)、Hadoop、NoSQL、 數(shù)據(jù)倉(cāng)庫(kù) 、文件等多種類型的數(shù)據(jù)源。 支持?jǐn)?shù)據(jù)庫(kù)、Hadoop、NoSQL、數(shù)據(jù)倉(cāng)庫(kù)、文件等多種類型的數(shù)據(jù)源。 活動(dòng)規(guī)則 活動(dòng)規(guī)則 參與條件: (1)已完成華為云注冊(cè)及企業(yè)/個(gè)人實(shí)名認(rèn)證的用戶;來自:專題
- 【數(shù)據(jù)挖掘】數(shù)據(jù)挖掘總結(jié) ( 數(shù)據(jù)挖掘相關(guān)概念 ) ★★
- 【數(shù)據(jù)挖掘】數(shù)據(jù)挖掘簡(jiǎn)介 ( 6 個(gè)常用功能 | 數(shù)據(jù)挖掘結(jié)果判斷 | 數(shù)據(jù)挖掘?qū)W習(xí)框架 | 數(shù)據(jù)挖掘分類 )
- 【數(shù)據(jù)挖掘】數(shù)據(jù)挖掘總結(jié) ( 數(shù)據(jù)挖掘特點(diǎn) | 數(shù)據(jù)挖掘組件化思想 | 決策樹模型 ) ★
- 數(shù)據(jù)挖掘
- 【Hadoop源碼解析】Hadoop WritableUtils解析
- 【數(shù)據(jù)挖掘】數(shù)據(jù)挖掘總結(jié) ( 貝葉斯分類器 ) ★
- python 數(shù)據(jù)挖掘
- 【數(shù)據(jù)挖掘】數(shù)據(jù)挖掘簡(jiǎn)介 ( 數(shù)據(jù)挖掘引入 | KDD 流程 | 數(shù)據(jù)源要求 | 技術(shù)特點(diǎn) )
- hadoop基礎(chǔ)一:Hadoop簡(jiǎn)介、安裝
- 【數(shù)據(jù)挖掘】數(shù)據(jù)挖掘總結(jié) ( 貝葉斯分類器示例 ) ★