- hadoop數(shù)據(jù)挖掘 內(nèi)容精選 換一換
-
- hadoop數(shù)據(jù)挖掘 相關(guān)內(nèi)容
-
華為云計(jì)算 云知識 MRS 與自建Hadoop對比 MRS與自建Hadoop對比 時(shí)間:2020-09-23 14:33:16 MapReduce服務(wù) (MRS)提供租戶完全可控的企業(yè)級大數(shù)據(jù)集群云服務(wù),輕松運(yùn)行Hadoop、Spark、HBase、Kafka、Storm等大數(shù)據(jù)組件來自:百科華為云計(jì)算 云知識 hadoop三大組件是什么 hadoop三大組件是什么 時(shí)間:2020-09-21 09:15:14 hadoop三大組件mapreduce分布式運(yùn)算框架yarn任務(wù)調(diào)度平臺hdfs分布式文件系統(tǒng) 1.HDFS數(shù)據(jù)存放策略:分塊存儲+副本存放。 2.數(shù)據(jù)拓?fù)浣Y(jié)來自:百科
- hadoop數(shù)據(jù)挖掘 更多內(nèi)容
-
華為云計(jì)算 云知識 數(shù)據(jù)倉庫 和Hadoop大數(shù)據(jù)平臺對比 數(shù)據(jù)倉庫和Hadoop大數(shù)據(jù)平臺對比 時(shí)間:2020-09-24 14:45:50 廣義上來說,Hadoop大數(shù)據(jù)平臺也可以看做是新一代的數(shù)據(jù)倉庫系統(tǒng),它也具有很多現(xiàn)代數(shù)據(jù)倉庫的特征,也被企業(yè)所廣泛使用。因?yàn)镸PP架構(gòu)的可來自:百科華為云計(jì)算 云知識 Serverless DLI 與自建Hadoop對比 Serverless DLI與自建Hadoop對比 時(shí)間:2020-09-03 15:43:59 DLI完全兼容Apache Spark、Apache Flink生態(tài)和接口,線下應(yīng)用可無縫平滑遷移上云,減少遷來自:百科GaussDB 華為版本 GaussDB華為版本 云數(shù)據(jù)庫 GaussDB是華為自主創(chuàng)新研發(fā)的分布式關(guān)系型數(shù)據(jù)庫,具有高性能、高可用、高安全、低成本的特點(diǎn)。企業(yè)級特性,智能診斷,索引推薦等豐富的企業(yè)級特性,有效提升客戶開發(fā)運(yùn)維效率,是企業(yè)核心數(shù)據(jù)上云信賴之選。帶你了解GaussDB版本。來自:專題
- 【數(shù)據(jù)挖掘】數(shù)據(jù)挖掘總結(jié) ( 數(shù)據(jù)挖掘相關(guān)概念 ) ★★
- 【數(shù)據(jù)挖掘】數(shù)據(jù)挖掘簡介 ( 6 個(gè)常用功能 | 數(shù)據(jù)挖掘結(jié)果判斷 | 數(shù)據(jù)挖掘?qū)W習(xí)框架 | 數(shù)據(jù)挖掘分類 )
- 【數(shù)據(jù)挖掘】數(shù)據(jù)挖掘總結(jié) ( 數(shù)據(jù)挖掘特點(diǎn) | 數(shù)據(jù)挖掘組件化思想 | 決策樹模型 ) ★
- 數(shù)據(jù)挖掘
- 【Hadoop源碼解析】Hadoop WritableUtils解析
- 【數(shù)據(jù)挖掘】數(shù)據(jù)挖掘總結(jié) ( 貝葉斯分類器 ) ★
- python 數(shù)據(jù)挖掘
- 【數(shù)據(jù)挖掘】數(shù)據(jù)挖掘簡介 ( 數(shù)據(jù)挖掘引入 | KDD 流程 | 數(shù)據(jù)源要求 | 技術(shù)特點(diǎn) )
- hadoop基礎(chǔ)一:Hadoop簡介、安裝
- 【數(shù)據(jù)挖掘】數(shù)據(jù)挖掘總結(jié) ( 貝葉斯分類器示例 ) ★