- 數(shù)據(jù)聚合分析 內(nèi)容精選 換一換
-
來自:百科探索Serverless數(shù)據(jù)湖:無需大數(shù)據(jù)背景,會SQL就會大數(shù)據(jù)分析 探索Serverless數(shù)據(jù)湖:無需大數(shù)據(jù)背景,會SQL就會大數(shù)據(jù)分析 時(shí)間:2021-04-27 15:04:16 內(nèi)容簡介: 隨著大數(shù)據(jù)&AI技術(shù)在企業(yè)商用場景的廣泛應(yīng)用,統(tǒng)一數(shù)據(jù)平臺已經(jīng)成為企業(yè)數(shù)據(jù)創(chuàng)新的基礎(chǔ)設(shè)施來自:百科
- 數(shù)據(jù)聚合分析 相關(guān)內(nèi)容
-
場景提供數(shù)據(jù)采集、數(shù)據(jù)存儲、數(shù)據(jù)處理和應(yīng)用接口對接等底層工作的支撐,支持工業(yè)領(lǐng)域大規(guī)模數(shù)據(jù)處理的物聯(lián)網(wǎng)解決方案。 智物聯(lián)Mixlinker工業(yè)IOT平臺解決方案是為工業(yè)垂直領(lǐng)域和不同場景提供數(shù)據(jù)采集、數(shù)據(jù)存儲、數(shù)據(jù)處理和應(yīng)用接口對接等底層工作的支撐,支持工業(yè)領(lǐng)域大規(guī)模數(shù)據(jù)處理的物聯(lián)網(wǎng)解決方案。來自:專題捕。時(shí)序數(shù)據(jù)的分析一般依賴于時(shí)序數(shù)據(jù)庫,數(shù)據(jù)保存至?xí)r序數(shù)據(jù)庫進(jìn)行分類與排序,再由其他應(yīng)用或服務(wù)從數(shù)據(jù)庫中獲取進(jìn)行進(jìn)一步處理。 離線數(shù)據(jù) 還有一些數(shù)據(jù),對于實(shí)時(shí)性和有序性的要求都沒那么強(qiáng),分析時(shí)數(shù)據(jù)已經(jīng)固化,我們稱之為離線數(shù)據(jù)。典型的離線數(shù)據(jù)包括產(chǎn)品銷量數(shù)據(jù)、景點(diǎn)游客數(shù)據(jù)等,應(yīng)用于來自:百科
- 數(shù)據(jù)聚合分析 更多內(nèi)容
-
GaussDB (DWS)應(yīng)用場景-實(shí)時(shí)數(shù)據(jù)分析 GaussDB(DWS)應(yīng)用場景-實(shí)時(shí)數(shù)據(jù)分析 時(shí)間:2021-06-17 14:58:31 數(shù)據(jù)庫 GaussDB(DWS)在實(shí)時(shí)數(shù)據(jù)分析的應(yīng)用如下圖所示。分析過程有如下的特點(diǎn): 流式數(shù)據(jù)實(shí)時(shí)入庫:IoT、互聯(lián)網(wǎng)等數(shù)據(jù)經(jīng)過流計(jì)算及AI服務(wù)處理后,可實(shí)時(shí)寫入GaussDB(DWS)。來自:百科華為云計(jì)算 云知識 華為云物聯(lián)網(wǎng)數(shù)據(jù)分析架構(gòu)一覽 華為云物聯(lián)網(wǎng)數(shù)據(jù)分析架構(gòu)一覽 時(shí)間:2021-03-12 15:05:56 物聯(lián)網(wǎng) 大數(shù)據(jù)分析 云計(jì)算 華為云物聯(lián)網(wǎng)數(shù)據(jù)分析從物聯(lián)網(wǎng)應(yīng)用場景出發(fā),提供行業(yè)大數(shù)據(jù)分析最佳實(shí)踐,降低企業(yè)物聯(lián)網(wǎng)數(shù)據(jù)開發(fā)門檻。 文中課程 ????????來自:百科度的聚合查詢。 按數(shù)據(jù)時(shí)效性分層處理,獲得綜合處理效率最大化 高效的數(shù)據(jù)清洗,為數(shù)據(jù)分析輸入高質(zhì)量的數(shù)據(jù) 相比將設(shè)備數(shù)據(jù)轉(zhuǎn)發(fā)至通用數(shù)據(jù)分析服務(wù)進(jìn)行分析的方案,IoT數(shù)據(jù)分析服務(wù)是專為物聯(lián)網(wǎng)場景設(shè)計(jì)的。 IoT數(shù)據(jù)分析服務(wù)支持設(shè)備接入管理服務(wù)和多種第三方服務(wù)作為數(shù)據(jù)源,將數(shù)據(jù)集成、來自:百科、高安全的能力。 數(shù)據(jù)采集 數(shù)據(jù)采集層提供了數(shù)據(jù)接入到 MRS 集群的能力,包括Flume(數(shù)據(jù)采集)、Loader(關(guān)系型數(shù)據(jù)導(dǎo)入)、Kafka(高可靠消息隊(duì)列),支持各種數(shù)據(jù)源導(dǎo)入數(shù)據(jù)到大數(shù)據(jù)集群中。使用云數(shù)據(jù)遷移云服務(wù)也可以將外部數(shù)據(jù)導(dǎo)入至MRS集群中。 數(shù)據(jù)存儲 MRS支持結(jié)來自:專題華為云計(jì)算 云知識 物聯(lián)網(wǎng)數(shù)據(jù)分析提供高性能的物聯(lián)網(wǎng)離線處理能力 物聯(lián)網(wǎng)數(shù)據(jù)分析提供高性能的物聯(lián)網(wǎng)離線處理能力 時(shí)間:2021-03-12 19:45:45 物聯(lián)網(wǎng) 大數(shù)據(jù)分析 云計(jì)算 物聯(lián)網(wǎng)數(shù)據(jù)分析提供低成本/高性能的物聯(lián)網(wǎng)離線處理能力,關(guān)鍵競爭力包含: 1. 與華為云IoT相關(guān)服務(wù)深度預(yù)集成,降低開發(fā)門檻;來自:百科什么是日志分析服務(wù) 什么是日志分析服務(wù) 時(shí)間:2020-09-15 15:28:16 日志分析服務(wù)(Log Analysis Service,簡稱 LOG )一站式海量實(shí)時(shí)日志分析服務(wù),提供日志實(shí)時(shí)采集、智能分析與可視化、轉(zhuǎn)儲等功能。提供端到端的快速、易用、豐富的日志分析平臺 應(yīng)用場景來自:百科
- 白話Elasticsearch51-深入聚合數(shù)據(jù)分析之text field聚合以及fielddata原理
- 分組與聚合分析:GroupBy操作實(shí)戰(zhàn)
- 微服務(wù)--數(shù)據(jù)聚合
- GaussDB(DWS)性能調(diào)優(yōu):窗口函數(shù)聚合慢分析及提前聚合改進(jìn)案例
- 數(shù)據(jù)清洗之 聚合函數(shù)使用
- 什么是數(shù)據(jù)庫聚合函數(shù)?
- Pandas數(shù)據(jù)聚合:groupby與agg
- 白話Elasticsearch31-深入聚合數(shù)據(jù)分析之bucket與metric
- Pandas聚合操作大揭秘從基礎(chǔ)到高級,實(shí)戰(zhàn)數(shù)據(jù)分析無往不利
- Tableau必知必會之妙用Fixed函數(shù)聚合分析維度