- GPU異構(gòu)計(jì)算架構(gòu)與深度學(xué)習(xí) 內(nèi)容精選 換一換
-
來自:百科需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:描述神經(jīng)網(wǎng)絡(luò)的定義與發(fā)展;熟悉深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)的重要“部件”;熟悉神經(jīng)網(wǎng)絡(luò)的訓(xùn)練與優(yōu)化;描述深度學(xué)習(xí)中常見的問題。 課程大綱 1. 深度學(xué)習(xí)簡(jiǎn)介 2. 訓(xùn)練法則來自:百科
- GPU異構(gòu)計(jì)算架構(gòu)與深度學(xué)習(xí) 相關(guān)內(nèi)容
-
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來自:百科經(jīng)網(wǎng)絡(luò)開發(fā)和訓(xùn)練,可謂再好不過了。如何使用深度學(xué)習(xí)框架MindSpore進(jìn)行模型開發(fā)與訓(xùn)練?又如何在ModelArts平臺(tái)訓(xùn)練一個(gè)可以用于識(shí)別手寫數(shù)字的模型呢?讓我們來一探究竟吧。 數(shù)據(jù)集的選擇與準(zhǔn)備 機(jī)器學(xué)習(xí)中的傳統(tǒng)機(jī)器學(xué)習(xí)和深度學(xué)習(xí)都是數(shù)據(jù)驅(qū)動(dòng)的研究領(lǐng)域,需要基于大量的歷史數(shù)來自:百科
- GPU異構(gòu)計(jì)算架構(gòu)與深度學(xué)習(xí) 更多內(nèi)容
-
視頻解碼與實(shí)時(shí)AI推理 優(yōu)勢(shì) GPU Direct 完美支撐大數(shù)據(jù)在神經(jīng)網(wǎng)絡(luò)間傳輸 100GB IB網(wǎng)絡(luò) 支持GPU Direct over RDMA,100G超高帶寬, 2us超低時(shí)延 內(nèi)置加速框架 一鍵式部署,分鐘級(jí)實(shí)例發(fā)放,聚焦核心業(yè)務(wù) 建議搭配使用 彈性云服務(wù)器 E CS GPU加速云服務(wù)器來自:專題產(chǎn)業(yè),與慶陽(yáng)政企各界一起,打造行業(yè)領(lǐng)先的西北渲染云服務(wù)中心,以渲染產(chǎn)業(yè)推動(dòng)慶陽(yáng)特色產(chǎn)業(yè)的數(shù)字化、智能化升級(jí),協(xié)助加快科研、產(chǎn)業(yè)和人才融合發(fā)展,推動(dòng)慶陽(yáng)向新型數(shù)字化城市發(fā)展。 GPU服務(wù)器渲染的視頻教程 GPU虛擬機(jī)申請(qǐng)流程操作 GPU虛擬機(jī)申請(qǐng)流程操作 華為云異構(gòu)計(jì)算服務(wù)介紹 華為云異構(gòu)計(jì)算服務(wù)介紹來自:專題工智能的相關(guān)內(nèi)容與應(yīng)用。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 通過本實(shí)驗(yàn)將了解如何使用Keras和Tensorflow構(gòu)建DFCNN的 語音識(shí)別 神經(jīng)網(wǎng)絡(luò),并且熟悉整個(gè)處理流程,包括數(shù)據(jù)預(yù)處理、模型訓(xùn)練、模型保存和模型預(yù)測(cè)等環(huán)節(jié)。 實(shí)驗(yàn)摘要 實(shí)驗(yàn)準(zhǔn)備:登錄華為云賬號(hào) 1. OBS 準(zhǔn)備 2.ModelArts應(yīng)用來自:百科、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過程。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來自:百科
- DPU:數(shù)據(jù)中心與計(jì)算架構(gòu)的革新引擎
- DPU:數(shù)據(jù)中心與計(jì)算架構(gòu)的革新引擎
- 華為云GPU ECS搭建深度學(xué)習(xí)環(huán)境
- [深度學(xué)習(xí)]CNN網(wǎng)絡(luò)架構(gòu)
- Facebook更新PyTorch 1.1,深度學(xué)習(xí)CPU搶GPU飯碗?
- 異構(gòu)計(jì)算與緩存一致性協(xié)議:提升計(jì)算性能與數(shù)據(jù)一致性的關(guān)鍵技術(shù)
- 比較GPU和CPU訓(xùn)練深度學(xué)習(xí)算法的效率(附ubuntu GPU服務(wù)器配置攻略)
- 【云駐共創(chuàng)】有什么好用的深度學(xué)習(xí)gpu云服務(wù)器平臺(tái)
- 《深度學(xué)習(xí)之TensorFlow入門、原理與進(jìn)階實(shí)戰(zhàn)》—2.3 GPU版本的安裝方法
- Volcano:容器批量調(diào)度器實(shí)現(xiàn)材料模擬并行計(jì)算【與云原生的故事】