- 移動(dòng)ai訓(xùn)練模型 內(nèi)容精選 換一換
-
本實(shí)驗(yàn)指導(dǎo)用戶在華為云ModelArts平臺(tái)對(duì)預(yù)置的模型進(jìn)行重訓(xùn)練,快速構(gòu)建 人臉識(shí)別 應(yīng)用。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 掌握MXNet AI引擎用法; 掌握基于MXNet構(gòu)建人臉識(shí)別神經(jīng)網(wǎng)絡(luò); 掌握華為云ModelArts SDK創(chuàng)建訓(xùn)練作業(yè)、模型部署和模型測(cè)試; 掌握ModelArts自研分布式訓(xùn)練框架MoXing。 實(shí)驗(yàn)摘要來(lái)自:百科截圖、日志。 華為云 面向未來(lái)的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)字化成功的關(guān)鍵是以云原生的思維踐行云原生,全數(shù)字化、全云化、AI驅(qū)動(dòng),一切皆服務(wù)。 華為云將持續(xù)創(chuàng)新,攜手客戶、合作伙伴和開(kāi)發(fā)者,致力于讓云無(wú)處不在,讓智能無(wú)所不及,共建智能世界云底座。 華為云官網(wǎng)立即注冊(cè)一元域名華為 云桌面來(lái)自:百科
- 移動(dòng)ai訓(xùn)練模型 相關(guān)內(nèi)容
-
來(lái)自:云商店華為云計(jì)算 云知識(shí) 移動(dòng)應(yīng)用測(cè)試有什么功能 移動(dòng)應(yīng)用測(cè)試有什么功能 時(shí)間:2020-09-14 14:40:44 移動(dòng)應(yīng)用測(cè)試(MobileAppTest),聯(lián)合TestBird提供移動(dòng)兼容性測(cè)試服務(wù),提供TOP機(jī)型套餐,使用 圖像識(shí)別 和準(zhǔn)確控件識(shí)別技術(shù),只需提供App應(yīng)用,便可生來(lái)自:百科
- 移動(dòng)ai訓(xùn)練模型 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 移動(dòng)互聯(lián)解決方案架構(gòu) 移動(dòng)互聯(lián)解決方案架構(gòu) 時(shí)間:2021-01-28 09:06:53 移動(dòng)互聯(lián)解決方案包含電商、網(wǎng)站、移動(dòng)APP、金融場(chǎng)景,提供彈性云端環(huán)境、資源全生命周期管理、數(shù)據(jù)安全及移動(dòng)互聯(lián)云生態(tài),支持億級(jí)并發(fā)連接,百萬(wàn)級(jí)交易處理和大數(shù)據(jù)分析能力,保障系統(tǒng)可靠與性能。來(lái)自:百科
快速入門MindSpore可視化調(diào)試調(diào)優(yōu),優(yōu)化模型效果。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 1.掌握MindSpore可視化調(diào)試調(diào)優(yōu)特性的使用方法 2.熟悉MindSpore可視化調(diào)試調(diào)優(yōu)的功能及用途 實(shí)驗(yàn)摘要 操作前提: 1.運(yùn)行訓(xùn)練腳本,查看訓(xùn)練情況 2.使用MindSpore可視化調(diào)試調(diào)優(yōu)組件對(duì)訓(xùn)練過(guò)程進(jìn)行觀察 3.來(lái)自:百科
合華為授權(quán)培訓(xùn)合作伙伴,舉辦2019華為中國(guó)區(qū)大學(xué)生ICT大賽。人工智能測(cè)試環(huán)節(jié)是本次大賽的加分賽,共設(shè)一項(xiàng)實(shí)踐命題,參賽選手在華為線上AI開(kāi)發(fā)平臺(tái)Modelarts上完成數(shù)據(jù)準(zhǔn)備、訓(xùn)練模型、部署模型,并且發(fā)布成模型服務(wù)預(yù)測(cè)截圖給出預(yù)測(cè)結(jié)果。完成實(shí)驗(yàn)操作并發(fā)布預(yù)測(cè)結(jié)果的選手,將獲得200分附加分。來(lái)自:百科
s數(shù)據(jù)集對(duì)預(yù)置的模型進(jìn)行重訓(xùn)練,快速構(gòu)建花卉圖像分類應(yīng)用。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 使用戶掌握如何使用ModelArts服務(wù)進(jìn)行數(shù)據(jù)集創(chuàng)建,預(yù)置模型選擇,模型訓(xùn)練、部署并最終建立在線預(yù)測(cè)作業(yè)。 實(shí)驗(yàn)摘要 操作前提:登錄華為云 1.準(zhǔn)備數(shù)據(jù) 2.訓(xùn)練模型 3.部署模型 4.發(fā)起預(yù)測(cè)請(qǐng)求來(lái)自:百科
還有機(jī)會(huì)獲得 華為云職業(yè)認(rèn)證 證書 訓(xùn)練營(yíng)結(jié)營(yíng)后可直接參與HCIP-Cloud Service DevOps Engineer職業(yè)認(rèn)證,通過(guò)后即頒發(fā)證書 三、訓(xùn)練營(yíng)參與流程 報(bào)名學(xué)習(xí)課程——觀看開(kāi)班直播——進(jìn)入學(xué)習(xí)交流群、每日打卡學(xué)習(xí)——參加訓(xùn)練營(yíng)結(jié)營(yíng)賽——論壇發(fā)帖互動(dòng) 四、豐富的訓(xùn)練營(yíng)獎(jiǎng)品,等你拿!來(lái)自:百科
本次訓(xùn)練所使用的經(jīng)過(guò)數(shù)據(jù)增強(qiáng)的圖片 基于深度學(xué)習(xí)的識(shí)別方法 與傳統(tǒng)的機(jī)器學(xué)習(xí)使用簡(jiǎn)單模型執(zhí)行分類等任務(wù)不同,此次訓(xùn)練我們使用深度神經(jīng)網(wǎng)絡(luò)作為訓(xùn)練模型,即深度學(xué)習(xí)。深度學(xué)習(xí)通過(guò)人工神經(jīng)網(wǎng)絡(luò)來(lái)提取特征,不同層的輸出常被視為神經(jīng)網(wǎng)絡(luò)提取出的不同尺度的特征,上一層的輸出作為下一層的輸入,層層連接構(gòu)成深度神經(jīng)網(wǎng)絡(luò)。來(lái)自:百科
人工智能開(kāi)發(fā)平臺(tái):簡(jiǎn)單易用,極大降低人工智能應(yīng)用門檻;高效便捷,圖形化一站式端到端作業(yè) 強(qiáng)大算力智能調(diào)度:華為自研人工智能芯片為智能預(yù)報(bào)業(yè)務(wù)提供強(qiáng)大算力 內(nèi)置行業(yè)模型:自帶大量氣象預(yù)報(bào)模型,持續(xù)優(yōu)化、更快上手 智能短臨預(yù)報(bào)方案架構(gòu) 華為云提供一站式人工智能開(kāi)發(fā)平臺(tái),通過(guò)對(duì)歷史氣象數(shù)據(jù)的高效訓(xùn)練不斷優(yōu)化推理模型,助力短時(shí)間臨近預(yù)報(bào)更加精準(zhǔn)來(lái)自:百科
華為云計(jì)算 云知識(shí) AI全棧成長(zhǎng)計(jì)劃-AI應(yīng)用篇 AI全棧成長(zhǎng)計(jì)劃-AI應(yīng)用篇 時(shí)間:2020-12-10 11:10:17 本課程為AI全棧成長(zhǎng)計(jì)劃第三階段課程:AI應(yīng)用篇。您將學(xué)習(xí)到行業(yè)深度應(yīng)用的AI領(lǐng)域知識(shí): OCR 與NLP的概念及其模型開(kāi)發(fā),同時(shí)您也可以選擇體驗(yàn)和學(xué)習(xí)當(dāng)下熱門的端云協(xié)同AI應(yīng)用開(kāi)發(fā)。來(lái)自:百科
如果使用過(guò)程中超出了舉辦方提供的現(xiàn)金券額度,需要參賽團(tuán)隊(duì)自行負(fù)責(zé),我方不再負(fù)責(zé)額外提供。 【鯤鵬訓(xùn)練營(yíng)暨鯤鵬應(yīng)用開(kāi)發(fā)者比賽議程】 1、時(shí)間:5月11日-5月25日為訓(xùn)練營(yíng)暨大賽報(bào)名時(shí)間; 2、6月1日-17日為訓(xùn)練營(yíng)(兩期)授課階段,兩期訓(xùn)練營(yíng)課程內(nèi)容一樣,同一隊(duì)伍不可重復(fù)參加; 3、6月18日-7月24日為大賽時(shí)間;來(lái)自:百科
- AI模型的訓(xùn)練過(guò)程步驟
- 網(wǎng)絡(luò)場(chǎng)景AI模型訓(xùn)練效率實(shí)踐
- kaldi語(yǔ)音識(shí)別 chain模型的訓(xùn)練流程
- AI Earth——AI模型訓(xùn)練:如何正確的進(jìn)行樣本點(diǎn)標(biāo)注?
- 練習(xí)使用AI Gallery的預(yù)置算法訓(xùn)練模型
- 《解鎖數(shù)據(jù)版本“魔方”:DataWorks護(hù)航AI模型訓(xùn)練》
- AI——自然語(yǔ)言預(yù)訓(xùn)練模型(Bert模型)之Transformer詳解
- 大模型落地實(shí)戰(zhàn)指南:從選擇到訓(xùn)練,深度解析顯卡選型、模型訓(xùn)練技、模型選擇巧及AI未來(lái)展望---打造AI應(yīng)用新篇章
- 《AI安全之對(duì)抗樣本入門》—3.6 使用預(yù)訓(xùn)練模型
- DeepSeek NSA:突破數(shù)據(jù)瓶頸,開(kāi)啟AI模型訓(xùn)練新范式