- 土地類型分類機(jī)器學(xué)習(xí) 內(nèi)容精選 換一換
-
別是深度學(xué)習(xí)的大數(shù)據(jù)集,讓訓(xùn)練結(jié)果可重現(xiàn)。 2、極“快”致“簡(jiǎn)”模型訓(xùn)練 自研的MoXing深度學(xué)習(xí)框架,更高效更易用,大大提升訓(xùn)練速度。 3、多場(chǎng)景部署 支持模型部署到多種生產(chǎn)環(huán)境,可部署為云端在線推理和批量推理,也可以直接部署到端和邊。 4、自動(dòng)學(xué)習(xí) 支持多種自動(dòng)學(xué)習(xí)能力,通來(lái)自:專題反映了真實(shí)世界的狀況。數(shù)據(jù)集作為深度學(xué)習(xí)和機(jī)器學(xué)習(xí)的輸入,對(duì)AI開(kāi)發(fā)有至關(guān)重要的意義。 ModelArts 數(shù)據(jù)管理 提供了一套高效便捷的管理和標(biāo)注數(shù)據(jù)集框架。不僅支持圖片、文本、語(yǔ)音、視頻等多種數(shù)據(jù)類型,涵蓋圖像分類、目標(biāo)檢測(cè)、音頻分割、文本分類等多個(gè)標(biāo)注場(chǎng)景,可適用于各種AI項(xiàng)目來(lái)自:百科
- 土地類型分類機(jī)器學(xué)習(xí) 相關(guān)內(nèi)容
-
來(lái)自:百科GaussDB 學(xué)習(xí) GaussDB學(xué)習(xí) 云數(shù)據(jù)庫(kù) GaussDB,華為自主創(chuàng)新研發(fā)的分布式關(guān)系型數(shù)據(jù)庫(kù),具有高性能、高可用、高安全、低成本的特點(diǎn),企業(yè)核心數(shù)據(jù)上云信賴之選。如何快速學(xué)習(xí)和了解GaussDB呢? 云數(shù)據(jù)庫(kù)GaussDB,華為自主創(chuàng)新研發(fā)的分布式關(guān)系型數(shù)據(jù)庫(kù),具有高性能來(lái)自:專題
- 土地類型分類機(jī)器學(xué)習(xí) 更多內(nèi)容
-
學(xué)習(xí) 區(qū)塊鏈 技術(shù) 課程學(xué)習(xí),動(dòng)手實(shí)驗(yàn),技能認(rèn)證,全面掌握區(qū)塊鏈前沿技術(shù) 在線課程 區(qū)塊鏈概念了解 了解區(qū)塊鏈的基本概念,為學(xué)習(xí)奠定基礎(chǔ)。 區(qū)塊鏈全景實(shí)踐課 本期課程結(jié)合華為云區(qū)塊鏈服務(wù) BCS ,從入門到實(shí)踐,循序漸進(jìn)一站式學(xué)習(xí)。5節(jié)實(shí)戰(zhàn)精品課,涵蓋B CS 基礎(chǔ)概念、各行各業(yè)的應(yīng)用現(xiàn)狀來(lái)自:專題什么是聯(lián)邦學(xué)習(xí) 文檔導(dǎo)讀 簡(jiǎn)介 職業(yè)認(rèn)證考試的學(xué)習(xí)方法 孤立森林:參數(shù)說(shuō)明 神經(jīng)網(wǎng)絡(luò)介紹 安裝須知:安裝場(chǎng)景 線上培訓(xùn)課程介紹 什么是自然語(yǔ)言處理:首次使用NLP 華為云培訓(xùn)體系 典型AI庫(kù) 腳本樣例:Zeppelin 自動(dòng)學(xué)習(xí)簡(jiǎn)介:自動(dòng)學(xué)習(xí)功能介紹 自動(dòng)學(xué)習(xí)簡(jiǎn)介:自動(dòng)學(xué)習(xí)功能介紹來(lái)自:百科工業(yè)智能體 ,依托大數(shù)據(jù)&人工智能,提供設(shè)計(jì)、生產(chǎn)、物流、銷售、服務(wù)全鏈?zhǔn)街悄?span style='color:#C7000B'>服務(wù),挖掘數(shù)據(jù)價(jià)值,助力企業(yè)借助新技術(shù),構(gòu)筑領(lǐng)先優(yōu)勢(shì) 應(yīng)用實(shí)踐: 產(chǎn)品質(zhì)量?jī)?yōu)化提升 基于客戶的反饋、互聯(lián)網(wǎng)點(diǎn)評(píng)分析、競(jìng)爭(zhēng)對(duì)手分析、維修記錄、售后歷史數(shù)據(jù),進(jìn)行分類分析,發(fā)現(xiàn)產(chǎn)品關(guān)鍵問(wèn)題,指導(dǎo)新產(chǎn)品設(shè)計(jì)改善,提升產(chǎn)品質(zhì)量來(lái)自:百科ModelArts支持應(yīng)用到圖像分類、物體檢測(cè)、視頻分析、 語(yǔ)音識(shí)別 、產(chǎn)品推薦、異常檢測(cè)等多種AI應(yīng)用場(chǎng)景。 圖1 ModelArts架構(gòu) AI開(kāi)發(fā)平臺(tái) ModelArts ModelArts是面向開(kāi)發(fā)者的一站式AI開(kāi)發(fā)平臺(tái),為機(jī)器學(xué)習(xí)與深度學(xué)習(xí)提供海量數(shù)據(jù)預(yù)處理及半自動(dòng)化標(biāo)注、大來(lái)自:百科流程說(shuō)明:用戶在流程說(shuō)明里上傳相關(guān)資料文件,也可以設(shè)置關(guān)于該流程的一些文字描述信息。 1.3.流程設(shè)計(jì)器 點(diǎn)擊頁(yè)面右上角的“流程設(shè)計(jì)器”進(jìn)入到流程是機(jī)器編輯頁(yè)面。 頁(yè)面左側(cè)顯示設(shè)置流程節(jié)點(diǎn)的可用工具,點(diǎn)擊相應(yīng)的按鈕進(jìn)行設(shè)置。 選擇工具:將鼠標(biāo)設(shè)置成選擇模式。 節(jié)點(diǎn)連線:設(shè)置節(jié)點(diǎn)連線。來(lái)自:云商店
- 機(jī)器學(xué)習(xí)分類
- 機(jī)器學(xué)習(xí)(五):機(jī)器學(xué)習(xí)算法分類
- 機(jī)器學(xué)習(xí)算法分類
- 學(xué)習(xí)筆記|機(jī)器學(xué)習(xí)的分類
- 《Spark機(jī)器學(xué)習(xí)進(jìn)階實(shí)戰(zhàn)》——1.3 機(jī)器學(xué)習(xí)分類
- 收藏 | 機(jī)器學(xué)習(xí)分類算法
- 機(jī)器學(xué)習(xí)筆記(七) ---- 貝葉斯分類
- 機(jī)器學(xué)習(xí)案例(十):新聞分類
- 《Python數(shù)據(jù)挖掘與機(jī)器學(xué)習(xí)實(shí)戰(zhàn)》—1.3 機(jī)器學(xué)習(xí)分類
- 【機(jī)器學(xué)習(xí)】聚類算法分類與探討