- 使用深度學(xué)習(xí)圖片分類 內(nèi)容精選 換一換
-
通用文字識(shí)別 支持 表格識(shí)別 、文檔識(shí)別、網(wǎng)絡(luò)圖片識(shí)別、手寫文字識(shí)別、智能分類識(shí)別、健康碼識(shí)別、核酸檢測(cè)記錄識(shí)別等任意格式圖片上文字信息的自動(dòng)化識(shí)別,自適應(yīng)分析各種版面和表格,快速實(shí)現(xiàn)各種文檔電子化。 通用文字識(shí)別支持表格識(shí)別、文檔識(shí)別、網(wǎng)絡(luò)圖片識(shí)別、手寫文字識(shí)別、智能分類識(shí)別、健康碼識(shí)別、核酸檢測(cè)來自:專題內(nèi)容審核 基于深度學(xué)習(xí)技術(shù)和大量的樣本庫,幫助客戶快速準(zhǔn)確進(jìn)行違規(guī)內(nèi)容審核,維護(hù)內(nèi)容安全。 內(nèi)容審核基于深度學(xué)習(xí)技術(shù)和大量的樣本庫,幫助客戶快速準(zhǔn)確進(jìn)行違規(guī)內(nèi)容審核,維護(hù)內(nèi)容安全。 簡(jiǎn)單高效 內(nèi)容審核提供RESTful規(guī)范的API接口,以及內(nèi)容審核服務(wù)SDK,方便客戶使用與集成;幫助客戶減少人力成本,節(jié)省業(yè)務(wù)支出。來自:專題
- 使用深度學(xué)習(xí)圖片分類 相關(guān)內(nèi)容
-
準(zhǔn)確率高:基于改進(jìn)的深度學(xué)習(xí)算法,檢測(cè)準(zhǔn)確率高。 響應(yīng)速度快: 視頻直播 響應(yīng)速度速度小于0.1秒。 在線商城 智能審核商家/用戶上傳圖像,高效識(shí)別并預(yù)警不合規(guī)圖片,防止涉黃、涉暴、政治敏感類圖像發(fā)布,降低人工審核成本和業(yè)務(wù)違規(guī)風(fēng)險(xiǎn)。 場(chǎng)景優(yōu)勢(shì)如下: 準(zhǔn)確率高:基于改進(jìn)的深度學(xué)習(xí)算法,檢測(cè)準(zhǔn)確率高。來自:百科從DWS導(dǎo)入數(shù)據(jù)。 了解更多 數(shù)據(jù)管理 -人工標(biāo)注 圖片標(biāo)注 ModelArts數(shù)據(jù)標(biāo)注中的圖片標(biāo)注指圖片類型的數(shù)據(jù)集進(jìn)行標(biāo)注。圖片標(biāo)注的標(biāo)注作業(yè)類型,分為“圖像分類”、“物體檢測(cè)”、“圖像分割”三種標(biāo)注類型。 文本標(biāo)注 文本場(chǎng)景的標(biāo)注主要為“文本分類”、“命名實(shí)體”、“文本三元組”。 分別支持對(duì)文本的內(nèi)容按照標(biāo)簽進(jìn)行分類處理。來自:專題
- 使用深度學(xué)習(xí)圖片分類 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 什么是實(shí)時(shí)互動(dòng)學(xué)習(xí) 什么是實(shí)時(shí)互動(dòng)學(xué)習(xí) 時(shí)間:2021-03-30 10:05:42 5G 行業(yè)解決方案 實(shí)時(shí)互動(dòng)學(xué)習(xí)解決方案場(chǎng)景是華為云5G教育解決方案的應(yīng)用場(chǎng)景之一,實(shí)時(shí)互動(dòng)學(xué)習(xí)利用手機(jī),平板或?qū)S玫脑O(shè)備,使學(xué)生獲得一種立體生動(dòng)的強(qiáng)互動(dòng)高沉浸感體驗(yàn),對(duì)知識(shí)來自:百科
造個(gè)性化自適應(yīng)學(xué)習(xí)平臺(tái),實(shí)現(xiàn)課內(nèi)學(xué)習(xí)向課外學(xué)習(xí)的延展,幫助每個(gè)學(xué)生實(shí)現(xiàn)彈性有效的針對(duì)性自主學(xué)習(xí); 區(qū)域網(wǎng)絡(luò)學(xué)習(xí)中心功能框架 (2)家庭教育 通過建設(shè)家庭教育平臺(tái),讓家長(zhǎng)通過家庭教育的系統(tǒng)學(xué)習(xí),擁有親子教育能力、自我管理能力、經(jīng)營幸福家庭的能力。 (3)老年開放學(xué)院 老年教育作為終來自:云商店
華為云計(jì)算 云知識(shí) 數(shù)據(jù)庫進(jìn)階學(xué)習(xí) 數(shù)據(jù)庫進(jìn)階學(xué)習(xí) 時(shí)間:2020-12-16 09:52:25 云計(jì)算是未來的方向, 云數(shù)據(jù)庫 是解決方案的核心,學(xué)習(xí)本課程掌握華為云數(shù)據(jù)庫的運(yùn)維管理, 數(shù)據(jù)庫遷移 和根據(jù)業(yè)務(wù)場(chǎng)景出具解決方案的能力。 課程簡(jiǎn)介 課程覆蓋了華為云對(duì)各行業(yè)解決方案、數(shù)據(jù)庫遷來自:百科
文字識(shí)別 OCR 使用API 03:04 API使用指導(dǎo) 文字識(shí)別 OCR使用API API使用指導(dǎo) 文字識(shí)別OCR使用SDK 06:38 SDK使用指導(dǎo) 文字識(shí)別OCR使用SDK SDK使用指導(dǎo) 文字識(shí)別 OCR使用API 03:04 文字識(shí)別 OCR使用API API使用指導(dǎo) 文字識(shí)別OCR使用SDK來自:專題
的場(chǎng)景下使用對(duì)象存儲(chǔ)服務(wù)。 立即學(xué)習(xí) 塊存儲(chǔ)服務(wù)EVS:云上堅(jiān)實(shí)的數(shù)據(jù)底座 通過本課程的學(xué)習(xí),用戶將對(duì)云硬盤形成系統(tǒng)的理解,掌握云硬盤的相關(guān)知識(shí)及如何在對(duì)應(yīng)的場(chǎng)景下使用云硬盤。 課程目標(biāo) 通過學(xué)習(xí)本課程,對(duì)云硬盤有系統(tǒng)的了解,并掌握相關(guān)操作。 立即學(xué)習(xí) 內(nèi)容分發(fā)網(wǎng)絡(luò) CDN :提升網(wǎng)絡(luò)響應(yīng)速度來自:專題
GaussDB 學(xué)習(xí) GaussDB學(xué)習(xí) 云數(shù)據(jù)庫GaussDB,華為自主創(chuàng)新研發(fā)的分布式關(guān)系型數(shù)據(jù)庫,具有高性能、高可用、高安全、低成本的特點(diǎn),企業(yè)核心數(shù)據(jù)上云信賴之選。如何快速學(xué)習(xí)和了解GaussDB呢? 云數(shù)據(jù)庫GaussDB,華為自主創(chuàng)新研發(fā)的分布式關(guān)系型數(shù)據(jù)庫,具有高性能來自:專題
時(shí)間:2020-09-16 11:27:14 圖像搜索 ( Image Search )基于深度學(xué)習(xí)與 圖像識(shí)別 技術(shù),結(jié)合不同應(yīng)用業(yè)務(wù)和行業(yè)場(chǎng)景,利用特征向量化與搜索能力,幫助您從指定圖庫中搜索相同或相似的圖片。 圖像搜索服務(wù)以開放API(Application Programming In來自:百科
課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員: 1、熟練使用華為云ModelArts一站式 AI開發(fā)平臺(tái) ; 2、系統(tǒng)、完整地了解多項(xiàng)AI領(lǐng)域的基礎(chǔ)知識(shí); 3、學(xué)習(xí)多項(xiàng)AI領(lǐng)域的經(jīng)典算法; 4、掌握一定的模型調(diào)優(yōu)能力,能自己動(dòng)手優(yōu)化模型; 課程大綱 第1章 圖像分類 第2章 物體檢測(cè) 第3章來自:百科
手把手教你玩轉(zhuǎn) 人臉識(shí)別 ,初探深度學(xué)習(xí)。 課程簡(jiǎn)介 本課程主要內(nèi)容包括:人臉識(shí)別原理、機(jī)器如何提取圖像的特征。 課程目標(biāo) 通過本課程學(xué)習(xí),了解機(jī)器學(xué)習(xí)的方法及快速掌握人臉識(shí)別應(yīng)用。 課程大綱 第1節(jié) 機(jī)器學(xué)習(xí)內(nèi)容回顧 第2節(jié) 機(jī)器是如何進(jìn)行圖像分類 第3節(jié) 圖像的特征提取 第4節(jié) 初探深度學(xué)習(xí) 第5節(jié)來自:百科
- 深度學(xué)習(xí)圖片分類CNN模板
- PyTorch 深度學(xué)習(xí)實(shí)戰(zhàn) | 基于 ResNet 的花卉圖片分類
- 使用深度學(xué)習(xí)進(jìn)行圖像分類的簡(jiǎn)介
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:智能垃圾分類與回收系統(tǒng)
- 深度學(xué)習(xí)分類任務(wù)常用評(píng)估指標(biāo)
- Python深度學(xué)習(xí)入門——手寫數(shù)字分類
- 使用PyTorch解決多分類問題:構(gòu)建、訓(xùn)練和評(píng)估深度學(xué)習(xí)模型
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:智能垃圾分類與環(huán)境保護(hù)
- 深度學(xué)習(xí)進(jìn)階,Keras視頻分類
- 深度學(xué)習(xí)實(shí)戰(zhàn)(七):使用多層感知器分類器對(duì)手寫數(shù)字進(jìn)行分類
- 開發(fā)深度學(xué)習(xí)模型
- 使用ModelArts Standard自動(dòng)學(xué)習(xí)實(shí)現(xiàn)垃圾分類
- 使用自動(dòng)學(xué)習(xí)實(shí)現(xiàn)文本分類
- 使用自動(dòng)學(xué)習(xí)實(shí)現(xiàn)聲音分類
- 使用自動(dòng)學(xué)習(xí)實(shí)現(xiàn)圖像分類
- 自動(dòng)學(xué)習(xí)簡(jiǎn)介
- 什么是圖像識(shí)別
- 部署NGC容器環(huán)境以構(gòu)建深度學(xué)習(xí)開發(fā)環(huán)境
- 分類算法中的難例圖片判斷
- 數(shù)據(jù)處理場(chǎng)景介紹