- 大數(shù)據(jù)spark 內(nèi)容精選 換一換
-
業(yè)級(jí)大數(shù)據(jù)集群云服務(wù),可輕松運(yùn)行Hadoop、Spark、HBase、Hue等大數(shù)據(jù)組件,具有企業(yè)級(jí)、易運(yùn)維、高安全和低成本等產(chǎn)品優(yōu)勢(shì)。 華為云 MapReduce服務(wù) ( MRS )提供可控的企業(yè)級(jí)大數(shù)據(jù)集群云服務(wù),可輕松運(yùn)行Hadoop、Spark、HBase、Hue等大數(shù)據(jù)組件,具來自:專題全域Serverless+AI,華為云加速大模型應(yīng)用開發(fā) 全域Serverless+AI,華為云加速大模型應(yīng)用開發(fā) 時(shí)間:2024-08-28 15:23:03 日前,華為全聯(lián)接大會(huì)2023在上海召開。華為云CTO張宇昕在大會(huì)上發(fā)布了基于Serverless技術(shù)的大模型應(yīng)用開發(fā)框架,框架以面向來自:百科
- 大數(shù)據(jù)spark 相關(guān)內(nèi)容
-
的活動(dòng),有利于分析工具快速訪問數(shù)據(jù),為用戶生成推薦。 優(yōu)勢(shì): 超強(qiáng)寫入:相比于其他NoSQL服務(wù),擁有超強(qiáng)寫入性能。 大數(shù)據(jù)分析:結(jié)合Spark等工具,可以用于實(shí)時(shí)推薦等大數(shù)據(jù)場景。 金融行業(yè) 云數(shù)據(jù)庫 GaussDB NoSQL結(jié)合Spark等大數(shù)據(jù)分析工具,可應(yīng)用于金融行業(yè)的風(fēng)控體系,構(gòu)建反欺詐系統(tǒng)。來自:百科來自:百科
- 大數(shù)據(jù)spark 更多內(nèi)容
-
加密云硬盤的備份數(shù)據(jù)會(huì)以加密方式存放。 云存儲(chǔ) 彈性文件服務(wù)SFS SFS服務(wù)端數(shù)據(jù)加密 云數(shù)據(jù)庫 云數(shù)據(jù)庫MySQL、云數(shù)據(jù)庫Postgre SQL、云數(shù)據(jù)庫SQL Server RDS數(shù)據(jù)庫服務(wù)端數(shù)據(jù)加密 云數(shù)據(jù)庫 文檔數(shù)據(jù)庫服務(wù) DDS DDS數(shù)據(jù)庫服務(wù)端數(shù)據(jù)加密 EI企業(yè)智能來自:專題
本地Windows主機(jī)使用 OBS 上傳文件到Windows云服務(wù)器:操作流程 教程:從OBS導(dǎo)入數(shù)據(jù)到集群:上傳數(shù)據(jù)到OBS 創(chuàng)建并提交Spark SQL作業(yè):步驟1:上傳數(shù)據(jù)至OBS 創(chuàng)建并提交Spark Jar作業(yè):步驟1:上傳數(shù)據(jù)至OBS 使用備份文件遷移不同Region/Redis版本的實(shí)例:步驟2:創(chuàng)建OBS桶并上傳備份文件來自:百科
使用 DLI 進(jìn)行電商BI報(bào)表分析:步驟1:上傳數(shù)據(jù) 本地Windows主機(jī)使用OBS上傳文件到Windows云服務(wù)器:操作流程 創(chuàng)建并提交Spark Jar作業(yè):步驟1:上傳數(shù)據(jù)至OBS 本地Windows主機(jī)使用OBS上傳文件到Windows云服務(wù)器:操作流程 創(chuàng)建并提交Spark SQL作業(yè):步驟1:上傳數(shù)據(jù)至OBS來自:百科
應(yīng)用升級(jí)、更新維護(hù)工作量大,對(duì)于大型系統(tǒng)不可接受。 而 DDM 實(shí)現(xiàn)的數(shù)據(jù)分片,能做到應(yīng)用0改動(dòng): 1. 大表分片:支持按Hash等算法實(shí)現(xiàn)自動(dòng)分片; 2. 自動(dòng)路由:根據(jù)分片規(guī)則,將SQL路由至真正的數(shù)據(jù)源; 3. 連接復(fù)用:通過MySQL實(shí)例的連接池復(fù)用,大幅提升數(shù)據(jù)庫并發(fā)訪問能力。 文中課程 更多精彩課程來自:百科
時(shí)間:2020-09-23 11:18:41 大數(shù)據(jù)是人類進(jìn)入互聯(lián)網(wǎng)時(shí)代以來面臨的一個(gè)巨大問題:社會(huì)生產(chǎn)生活產(chǎn)生的數(shù)據(jù)量越來越大,數(shù)據(jù)種類越來越多,數(shù)據(jù)產(chǎn)生的速度越來越快。傳統(tǒng)的數(shù)據(jù)處理技術(shù),比如說單機(jī)存儲(chǔ),關(guān)系數(shù)據(jù)庫已經(jīng)無法解決這些新的大數(shù)據(jù)問題。為解決以上大數(shù)據(jù)處理問題,Apache基金會(huì)推出來自:百科
對(duì)某個(gè)key-value的列表進(jìn)行降序顯示。當(dāng)操作和查詢并發(fā)大的時(shí)候,使用傳統(tǒng)數(shù)據(jù)庫就會(huì)遇到性能瓶頸,造成較大的時(shí)延。 使用分布式緩存服務(wù)(D CS )的Redis版本,可以實(shí)現(xiàn)一個(gè)商品熱銷排行榜的功能。它的優(yōu)勢(shì)在于: 數(shù)據(jù)保存在緩存中,讀寫速度非??臁?提供字符串(String)、來自:專題
華為云計(jì)算 云知識(shí) 華為云 區(qū)塊鏈 三大核心技術(shù)國際標(biāo)準(zhǔn)立項(xiàng)通過 華為云區(qū)塊鏈三大核心技術(shù)國際標(biāo)準(zhǔn)立項(xiàng)通過 時(shí)間:2022-11-24 09:57:20 近日,國際電信聯(lián)盟第十六研究組(ITU-T SG16)召開全體會(huì)議,由華為云區(qū)塊鏈團(tuán)隊(duì)牽頭的三個(gè)區(qū)塊鏈國際標(biāo)準(zhǔn)順利通過立項(xiàng),分別是:來自:百科
立即體驗(yàn)MRS 了解詳情 什么是MRS 大數(shù)據(jù)是人類進(jìn)入互聯(lián)網(wǎng)時(shí)代以來面臨的一個(gè)巨大問題:社會(huì)生產(chǎn)生活產(chǎn)生的數(shù)據(jù)量越來越大,數(shù)據(jù)種類越來越多,數(shù)據(jù)產(chǎn)生的速度越來越快。傳統(tǒng)的數(shù)據(jù)處理技術(shù),比如說單機(jī)存儲(chǔ),關(guān)系數(shù)據(jù)庫已經(jīng)無法解決這些新的大數(shù)據(jù)問題。為解決以上大數(shù)據(jù)處理問題,Apache基金會(huì)推出來自:專題
快速提升數(shù)據(jù)運(yùn)營能力。 優(yōu)勢(shì) 多行業(yè)支持 覆蓋政務(wù)/稅務(wù)/城市/交通/園區(qū)等各行業(yè)。 標(biāo)準(zhǔn)規(guī)范支持 支持分層結(jié)構(gòu)的行業(yè)數(shù)據(jù)標(biāo)準(zhǔn)。 領(lǐng)域模型豐富 支持包含人員/組織/事件/時(shí)空/車輛/資產(chǎn)/設(shè)備/資源等八大類數(shù)據(jù)以及相互之間關(guān)系的行業(yè)領(lǐng)域模型。 快速應(yīng)用行業(yè)庫 支持快速應(yīng)用的行業(yè)主題庫、行業(yè)算法庫、行業(yè)指標(biāo)庫。來自:百科
華為云計(jì)算 云知識(shí) 數(shù)據(jù)主題聯(lián)接(數(shù)據(jù)中臺(tái)) 數(shù)據(jù)主題聯(lián)接(數(shù)據(jù)中臺(tái)) 時(shí)間:2020-11-18 16:38:33 數(shù)據(jù)主題聯(lián)接(數(shù)據(jù)中臺(tái))對(duì)數(shù)據(jù)湖的數(shù)據(jù)按業(yè)務(wù)流/事件、對(duì)象/主體進(jìn)行聯(lián)接和規(guī)則計(jì)算等處理,形成面向數(shù)據(jù)消費(fèi)的主題數(shù)據(jù),具有多角度、多層次、多粒度等特征,支撐業(yè)務(wù)分析、決策與執(zhí)行。來自:百科
- 2021年大數(shù)據(jù)Spark(三十一):Spark On Hive
- 大數(shù)據(jù)——Spark基本架構(gòu)及原理
- 2021年大數(shù)據(jù)Spark(二十四):SparkSQL數(shù)據(jù)抽象
- 2021年大數(shù)據(jù)Spark(十八):Spark Core的RDD Checkpoint
- 大數(shù)據(jù)——spark streaming 與 storm 的對(duì)比
- 2021年大數(shù)據(jù)Spark(三十五):SparkStreaming數(shù)據(jù)抽象 DStream
- 2021年大數(shù)據(jù)Spark(十六):Spark Core的RDD算子練習(xí)
- 2021年大數(shù)據(jù)Spark(十):環(huán)境搭建集群模式 Spark on YARN
- 2021年大數(shù)據(jù)Spark(二十六):SparkSQL數(shù)據(jù)處理分析
- 【云駐共創(chuàng)】鯤鵬BoostKit大數(shù)據(jù)Spark算法加速分享