- 十個(gè)值得一試的開源深度學(xué)習(xí)框架 內(nèi)容精選 換一換
-
開發(fā)者可利用平臺(tái)的數(shù)據(jù)集訓(xùn)練自己的模型,或利用平臺(tái)中的算法框架定制出自己所需的功能。平臺(tái)核心功能主要包括樣本庫、算法庫、模型庫、訓(xùn)練平臺(tái)與推理服務(wù)平臺(tái)。其中樣本庫是存儲(chǔ)和管理各類型樣本資源的組件,為訓(xùn)練環(huán)境提供標(biāo)注樣本,支撐模型訓(xùn)練;算法庫是提供開箱可用的神經(jīng)網(wǎng)絡(luò)算法倉庫,模型庫來自:其他自治等能力,完整的打通了邊緣計(jì)算中云、邊、設(shè)備協(xié)同的場(chǎng)景。 Kubernetes為代表的云原生技術(shù)為數(shù)據(jù)中心而生,容器化的應(yīng)用封裝、編排模式現(xiàn)在已成為事實(shí)標(biāo)準(zhǔn)。但在邊緣場(chǎng)景下,邊緣網(wǎng)絡(luò)不穩(wěn)定、資源受限、海量設(shè)備的接入管理等場(chǎng)景都為云原生技術(shù)延伸到邊緣計(jì)算帶來巨大的挑戰(zhàn)。 本次將詳來自:百科
- 十個(gè)值得一試的開源深度學(xué)習(xí)框架 相關(guān)內(nèi)容
-
展 GPU是干什么的-功能描述 HPC與AI 強(qiáng)大的單精度與雙精度計(jì)算能力 數(shù)據(jù)傳輸 提供GPU計(jì)算集群大量數(shù)據(jù)傳輸能力 高性能網(wǎng)絡(luò) P1、P2v實(shí)例提供最大10Gb/s的網(wǎng)絡(luò)帶寬,單個(gè)裸金屬實(shí)例額外配備100GB IB網(wǎng)絡(luò),最大限度滿足計(jì)算集群對(duì)于數(shù)據(jù)傳輸的要求 GPU Direct來自:專題GA CS )能夠提供強(qiáng)大的浮點(diǎn)計(jì)算能力,從容應(yīng)對(duì)高實(shí)時(shí)、高并發(fā)的海量計(jì)算場(chǎng)景。GPU加速型云服務(wù)器包括圖形加速型(G系列)和計(jì)算加速型(P系列)兩類。 圖形加速型即“G系列”的 彈性云服務(wù)器 ,適合于3D動(dòng)畫渲染、CAD等。 計(jì)算加速型即“P系列”的彈性云服務(wù)器,適合于深度學(xué)習(xí)、科學(xué)計(jì)算、CAE等。來自:專題
- 十個(gè)值得一試的開源深度學(xué)習(xí)框架 更多內(nèi)容
-
購買獨(dú)享帶寬或是共享帶寬時(shí)都需要選擇帶寬大小,該值為出云帶寬的最大上限。如果出現(xiàn)依賴于公網(wǎng)的web應(yīng)用程序出現(xiàn)卡頓等情況,請(qǐng)先排查該彈性云服務(wù)器綁定的EIP獨(dú)享帶寬是否超過帶寬最大上限。 2023-06-25 GPU云服務(wù)器 帶寬 帶寬超限 云帶寬 GPU服務(wù)器怎么使用的視頻教程 GPU虛擬機(jī)申請(qǐng)流程操作 GPU虛擬機(jī)申請(qǐng)流程操作來自:專題什么是實(shí)時(shí)互動(dòng)學(xué)習(xí) 什么是實(shí)時(shí)互動(dòng)學(xué)習(xí) 時(shí)間:2021-03-30 10:05:42 5G 行業(yè)解決方案 實(shí)時(shí)互動(dòng)學(xué)習(xí)解決方案場(chǎng)景是華為云5G教育解決方案的應(yīng)用場(chǎng)景之一,實(shí)時(shí)互動(dòng)學(xué)習(xí)利用手機(jī),平板或?qū)S?span style='color:#C7000B'>的設(shè)備,使學(xué)生獲得一種立體生動(dòng)的強(qiáng)互動(dòng)高沉浸感體驗(yàn),對(duì)知識(shí)點(diǎn)有一個(gè)全方位的了解。再結(jié)來自:百科老年教育作為終身教育的重要內(nèi)容,是構(gòu)建學(xué)習(xí)型社會(huì)、提高全民族思想文化素質(zhì)的有機(jī)組成部分,精神文明建設(shè)不可缺少的一部分。隨著社會(huì)經(jīng)濟(jì)發(fā)展以及大環(huán)境影響,老年人的精神面貌以及生活狀態(tài)得到了越來越廣泛的關(guān)注,為了豐富老年人的生活,老年開放學(xué)院 在線教育平臺(tái) 提供老年人在線教育,對(duì)幫助老年人與社會(huì)共同進(jìn)步來自:云商店華為云計(jì)算 云知識(shí) 數(shù)據(jù)庫進(jìn)階學(xué)習(xí) 數(shù)據(jù)庫進(jìn)階學(xué)習(xí) 時(shí)間:2020-12-16 09:52:25 云計(jì)算是未來的方向, 云數(shù)據(jù)庫 是解決方案的核心,學(xué)習(xí)本課程掌握華為云數(shù)據(jù)庫的運(yùn)維管理, 數(shù)據(jù)庫遷移 和根據(jù)業(yè)務(wù)場(chǎng)景出具解決方案的能力。 課程簡(jiǎn)介 課程覆蓋了華為云對(duì)各行業(yè)解決方案、數(shù)據(jù)庫遷來自:百科對(duì)軟件開發(fā)人員來說,此規(guī)范可以保證軟件產(chǎn)品的質(zhì)量,可以作為和其他程序員溝通的標(biāo)準(zhǔn),若編碼規(guī)則是建立在廣泛的共識(shí)之上,更有利于產(chǎn)品的發(fā)展。 對(duì)軟件開發(fā)人員來說,此規(guī)范可以保證軟件產(chǎn)品的質(zhì)量,可以作為和其他程序員溝通的標(biāo)準(zhǔn),若編碼規(guī)則是建立在廣泛的共識(shí)之上,更有利于產(chǎn)品的發(fā)展。 在線學(xué)習(xí) 基于應(yīng)用服務(wù)網(wǎng)格的灰度發(fā)布 微認(rèn)證來自:專題15:46:18 繁多的AI工具安裝配置、數(shù)據(jù)準(zhǔn)備、模型訓(xùn)練慢等是困擾AI工程師的諸多難題。為解決這個(gè)難題,將一站式的 AI開發(fā)平臺(tái) (ModelArts)提供給開發(fā)者,從數(shù)據(jù)準(zhǔn)備到算法開發(fā)、模型訓(xùn)練,最后把模型部署起來,集成到生產(chǎn)環(huán)境。一站式完成所有任務(wù)。ModelArts的功能總覽如下圖所示。來自:百科本課程針對(duì) OBS 對(duì)象存儲(chǔ)服務(wù)有需求的用戶,通過本課程學(xué)習(xí),用戶將對(duì)OBS對(duì)象存儲(chǔ)服務(wù)形成整體了解,學(xué)會(huì)在正確的場(chǎng)景下使用對(duì)象存儲(chǔ)服務(wù)。 立即學(xué)習(xí) 塊存儲(chǔ)服務(wù)EVS:云上堅(jiān)實(shí)的數(shù)據(jù)底座 通過本課程的學(xué)習(xí),用戶將對(duì)云硬盤形成系統(tǒng)的理解,掌握云硬盤的相關(guān)知識(shí)及如何在對(duì)應(yīng)的場(chǎng)景下使用云硬盤。 課程目標(biāo)來自:專題本課程針對(duì)OBS對(duì)象存儲(chǔ)服務(wù)有需求的用戶,通過本課程學(xué)習(xí),用戶將對(duì)OBS對(duì)象存儲(chǔ)服務(wù)形成整體了解,學(xué)會(huì)在正確的場(chǎng)景下使用對(duì)象存儲(chǔ)服務(wù)。 立即學(xué)習(xí) 塊存儲(chǔ)服務(wù)EVS:云上堅(jiān)實(shí)的數(shù)據(jù)底座 通過本課程的學(xué)習(xí),用戶將對(duì)云硬盤形成系統(tǒng)的理解,掌握云硬盤的相關(guān)知識(shí)及如何在對(duì)應(yīng)的場(chǎng)景下使用云硬盤。 課程目標(biāo)來自:專題角色: IAM 最初提供的一種根據(jù)用戶的工作職能定義權(quán)限的粗粒度授權(quán)機(jī)制。該機(jī)制以服務(wù)為粒度,提供有限的服務(wù)相關(guān)角色用于授權(quán) IAM最新提供的一種細(xì)粒度授權(quán)的能力,可以精確到具體服務(wù)的操作、資源以及請(qǐng)求條件等。基于策略的授權(quán)是一種更加靈活的授權(quán)方式,能夠滿足企業(yè)對(duì)權(quán)限最小化的安全管控要求。來自:專題
- MindSpore!這款剛剛開源的深度學(xué)習(xí)框架我愛了!
- 《MXNet深度學(xué)習(xí)實(shí)戰(zhàn)》—1.2 深度學(xué)習(xí)框架
- 深度學(xué)習(xí)框架指南
- 《深度學(xué)習(xí):主流框架和編程實(shí)戰(zhàn)》——1.3 本書涉及的深度學(xué)習(xí)框架
- PyTorch深度學(xué)習(xí)實(shí)戰(zhàn) | 深度學(xué)習(xí)框架(PyTorch)
- PyTorch深度學(xué)習(xí)領(lǐng)域框架
- 針對(duì)深度學(xué)習(xí)框架版本的討論
- 值得推薦的.NET ORM框架
- 《深度學(xué)習(xí):主流框架和編程實(shí)戰(zhàn)》——1.4 優(yōu)化深度學(xué)習(xí)的方法
- 《深度學(xué)習(xí):主流框架和編程實(shí)戰(zhàn)》——1.5 深度學(xué)習(xí)展望