- 深度學(xué)習(xí)中的車輛識(shí)別 內(nèi)容精選 換一換
-
人流量以及視頻幀中的熱點(diǎn)分布信息。 邊緣人流量統(tǒng)計(jì):分析邊緣節(jié)點(diǎn)上的RTSP視頻流,檢測(cè)穿過(guò)自定義線與區(qū)域的人流量以及視頻幀中的熱點(diǎn)分布信息。 車輛識(shí)別: 云上車輛識(shí)別:分析華為云上的VIS視頻流,檢測(cè)視頻中出現(xiàn)的車輛或車牌信息。 邊緣車輛識(shí)別:分析邊緣節(jié)點(diǎn)上的RTSP視頻流,檢測(cè)視頻中出現(xiàn)的車輛或車牌信息。來(lái)自:百科在園區(qū)、車庫(kù)等進(jìn)出口,對(duì)車輛進(jìn)行車牌、車型識(shí)別,可實(shí)現(xiàn)特定車牌和車型的權(quán)限認(rèn)證。 安全帽檢測(cè) 從視頻監(jiān)控中發(fā)現(xiàn)未佩戴安全帽的工人,并在指定設(shè)備發(fā)起告警。 軌跡還原 將多個(gè)攝像頭識(shí)別出的同個(gè)人臉或者車輛,協(xié)同分析來(lái)還原行人或者車輛的前進(jìn)路徑。 人臉檢索 在監(jiān)控中通過(guò)人臉識(shí)別園區(qū)指定人臉,可用于黑名單識(shí)別等。來(lái)自:百科
- 深度學(xué)習(xí)中的車輛識(shí)別 相關(guān)內(nèi)容
-
來(lái)自:百科
- 深度學(xué)習(xí)中的車輛識(shí)別 更多內(nèi)容
-
支持對(duì)火車票上主要字段進(jìn)行結(jié)構(gòu)化識(shí)別,包括始發(fā)站、目的站、車次、日期、票價(jià)、姓名等。 定額發(fā)票識(shí)別 支持對(duì)定額發(fā)票中的發(fā)票代碼、發(fā)票號(hào)碼、金額信息、發(fā)票地址等信息的結(jié)構(gòu)化識(shí)別。 車輛通行費(fèi)發(fā)票識(shí)別 支持對(duì)車輛通行費(fèi)發(fā)票中的關(guān)鍵文字信息的結(jié)構(gòu)化識(shí)別。 飛機(jī)行程單識(shí)別 支持對(duì)飛機(jī)行程單中全字段的信息結(jié)構(gòu)化識(shí)別。來(lái)自:專題數(shù)據(jù)庫(kù)安全 基礎(chǔ) HCIA- GaussDB 系列課程。數(shù)據(jù)庫(kù)作為核心的基礎(chǔ)軟件,在我們的系統(tǒng)架構(gòu)中處于系統(tǒng)的最末端,它是查詢和存儲(chǔ)數(shù)據(jù)的系統(tǒng),是各業(yè)務(wù)數(shù)據(jù)最終落地的承載者,而當(dāng)今社會(huì)最值錢的又是擁有大量的數(shù)據(jù),因此其數(shù)據(jù)庫(kù)安全性至關(guān)重要。 立即學(xué)習(xí) 最新文章 替換VolcanoJobreplace來(lái)自:百科華為云計(jì)算 云知識(shí) CBR中的基礎(chǔ)概念 CBR中的基礎(chǔ)概念 時(shí)間:2021-07-02 10:50:39 CBR中的常用基礎(chǔ)概念有: 1. 存儲(chǔ)庫(kù) 云備份使用存儲(chǔ)庫(kù)來(lái)存放備份,存儲(chǔ)庫(kù)分為備份存儲(chǔ)庫(kù)和復(fù)制存儲(chǔ)庫(kù)兩種。 2. 復(fù)制 復(fù)制是指將一個(gè)區(qū)域已經(jīng)生成的備份 數(shù)據(jù)復(fù)制 到另一個(gè)區(qū)域。來(lái)自:百科主機(jī)安全風(fēng)險(xiǎn)。 物聯(lián)網(wǎng) 基于 物聯(lián)網(wǎng)平臺(tái) 的自販機(jī)銷量分析:利用物聯(lián)網(wǎng)平臺(tái)和大數(shù)據(jù)分析技術(shù),實(shí)現(xiàn)自販機(jī)的設(shè)備管理和大數(shù)據(jù)分析。 鯤鵬 基于BoostKit的虛擬化部署和調(diào)優(yōu)實(shí)踐:鯤鵬云平臺(tái)虛擬化部署和調(diào)優(yōu)指導(dǎo),快速具備鯤鵬云平臺(tái)虛擬化部署和調(diào)優(yōu)的能力。 學(xué)員可在華為云學(xué)院微認(rèn)證主頁(yè)查來(lái)自:百科和統(tǒng)計(jì),減少了人工操作的工作量,提高了數(shù)據(jù)的準(zhǔn)確性和實(shí)時(shí)性。2. 設(shè)備健康智能分析:系統(tǒng)可以通過(guò)對(duì)設(shè)備的運(yùn)行狀態(tài)進(jìn)行智能分析,及時(shí)發(fā)現(xiàn)設(shè)備的異常情況,預(yù)防設(shè)備故障的發(fā)生,提高了設(shè)備的可靠性和穩(wěn)定性。3. 礦業(yè)大數(shù)據(jù)智能分析:智慧礦山生產(chǎn)調(diào)度系統(tǒng)可以對(duì)大量的礦業(yè)數(shù)據(jù)進(jìn)行智能分析,從而優(yōu)化礦山的生產(chǎn)流程來(lái)自:專題華為云計(jì)算 云知識(shí) DRS中的遷移對(duì)比 DRS中的遷移對(duì)比 時(shí)間:2021-05-31 17:06:58 數(shù)據(jù)庫(kù) DRS中的遷移可以進(jìn)行對(duì)比。分為對(duì)象級(jí)對(duì)比和數(shù)據(jù)級(jí)對(duì)比。對(duì)比可以隨時(shí)取消。 1. 對(duì)象級(jí)對(duì)比 在宏觀上對(duì)比數(shù)據(jù)對(duì)象是否缺失。包括數(shù)據(jù)庫(kù)、表、視圖、存儲(chǔ)過(guò)程、觸發(fā)器等。來(lái)自:百科華為云計(jì)算 云知識(shí) DRS使用中的參數(shù)遷移 DRS使用中的參數(shù)遷移 時(shí)間:2021-05-31 17:03:37 數(shù)據(jù)庫(kù) DRS使用中,參數(shù)遷移包括常規(guī)參數(shù)和性能參數(shù)。 常規(guī)參數(shù)大部分參數(shù)不遷移,并不會(huì)導(dǎo)致遷移失敗,但參數(shù)往往直接影響到業(yè)務(wù)的運(yùn)行和性能表現(xiàn)DRS支持參數(shù)遷移,讓 數(shù)據(jù)庫(kù)遷移 后,業(yè)務(wù)和應(yīng)用更平滑,更無(wú)憂。來(lái)自:百科
- OpenCV中的深度學(xué)習(xí)車輛檢測(cè)
- 車輛重識(shí)別學(xué)習(xí)筆記
- 深度學(xué)習(xí)在語(yǔ)音識(shí)別中的應(yīng)用
- 深度學(xué)習(xí)在自動(dòng)駕駛車輛車道檢測(cè)中的應(yīng)用
- 深度學(xué)習(xí)在語(yǔ)音識(shí)別中的應(yīng)用
- 深度學(xué)習(xí)在圖像識(shí)別中的應(yīng)用
- 深度學(xué)習(xí)技術(shù)在測(cè)井?dāng)?shù)據(jù)分類與識(shí)別中的應(yīng)用
- 探討場(chǎng)景文本識(shí)別中的語(yǔ)言模型:基于深度學(xué)習(xí)的解決思路
- 基于深度學(xué)習(xí)的停車場(chǎng)車輛檢測(cè)算法matlab仿真
- 《深度學(xué)習(xí)之圖像識(shí)別核心技術(shù)與案例實(shí)戰(zhàn)》—3 深度學(xué)習(xí)中的數(shù)據(jù)