- 深度學(xué)習(xí)之圖像分割 內(nèi)容精選 換一換
-
數(shù)據(jù)集支持的類(lèi)型 文件型 圖片:對(duì)圖像類(lèi)數(shù)據(jù)進(jìn)行處理,支持 .jpg、.png、.jpeg、.bmp四種圖像格式,支持用戶進(jìn)行圖像分類(lèi)、物體檢測(cè)、圖像分割類(lèi)型的標(biāo)注。 音頻:對(duì)音頻類(lèi)數(shù)據(jù)進(jìn)行處理,支持.wav格式,支持用戶進(jìn)行聲音分類(lèi)、語(yǔ)音內(nèi)容、語(yǔ)音分割三種類(lèi)型的標(biāo)注。 文本:對(duì)文本類(lèi)數(shù)據(jù)進(jìn)行處理,支持來(lái)自:專題華為云計(jì)算 云知識(shí) 零門(mén)檻入門(mén)數(shù)據(jù)庫(kù)學(xué)習(xí)之關(guān)系型數(shù)據(jù)庫(kù)架構(gòu) 零門(mén)檻入門(mén)數(shù)據(jù)庫(kù)學(xué)習(xí)之關(guān)系型數(shù)據(jù)庫(kù)架構(gòu) 時(shí)間:2021-01-11 09:37:48 關(guān)系型數(shù)據(jù)庫(kù) 數(shù)據(jù)庫(kù) 早期在數(shù)據(jù)量還不是很大的時(shí)候,數(shù)據(jù)庫(kù)就采用一種很簡(jiǎn)單的單機(jī)服務(wù),在一臺(tái)專用的服務(wù)器上安裝數(shù)據(jù)庫(kù)軟件,對(duì)外提供數(shù)據(jù)來(lái)自:百科
- 深度學(xué)習(xí)之圖像分割 相關(guān)內(nèi)容
-
華為云計(jì)算 云知識(shí) 零門(mén)檻入門(mén)數(shù)據(jù)庫(kù)學(xué)習(xí)之數(shù)據(jù)庫(kù)技術(shù)發(fā)展史 零門(mén)檻入門(mén)數(shù)據(jù)庫(kù)學(xué)習(xí)之數(shù)據(jù)庫(kù)技術(shù)發(fā)展史 時(shí)間:2021-01-08 11:34:17 數(shù)據(jù)庫(kù)技術(shù)是因 數(shù)據(jù)管理 任務(wù)的需要,而產(chǎn)生數(shù)據(jù)管理是指對(duì)數(shù)據(jù)進(jìn)行分類(lèi)、組織、編碼、存儲(chǔ)、檢索和維護(hù),是數(shù)據(jù)處理的中心問(wèn)題。在數(shù)據(jù)管理的發(fā)展歷史中經(jīng)歷了三個(gè)階段。來(lái)自:百科圖像識(shí)別服務(wù)介紹 圖像識(shí)別服務(wù)介紹 圖像識(shí)別( Image Recognition ),基于深度學(xué)習(xí)技術(shù),可準(zhǔn)確識(shí)別圖像中的視覺(jué)內(nèi)容,提供多種物體、場(chǎng)景和概念標(biāo)簽,具備目標(biāo)檢測(cè)和屬性識(shí)別等能力,幫助客戶準(zhǔn)確識(shí)別和理解圖像內(nèi)容 圖像識(shí)別(Image Recognition),基于深度學(xué)來(lái)自:專題
- 深度學(xué)習(xí)之圖像分割 更多內(nèi)容
-
概覽:產(chǎn)品優(yōu)勢(shì) 什么是Octopus:產(chǎn)品優(yōu)勢(shì) 視頻數(shù)據(jù)集使用教程:后續(xù)操作 產(chǎn)品介紹:服務(wù)內(nèi)容 訓(xùn)練服務(wù)簡(jiǎn)介 圖像分割數(shù)據(jù)集使用教程:后續(xù)操作 數(shù)據(jù)資產(chǎn)簡(jiǎn)介 圖像分割數(shù)據(jù)集使用教程:后續(xù)操作 使用流程 產(chǎn)品介紹:服務(wù)內(nèi)容 權(quán)限管理:理解Octopus的權(quán)限與委托 總覽:優(yōu)勢(shì)來(lái)自:百科華為云計(jì)算 云知識(shí) 圖像標(biāo)簽優(yōu)勢(shì) 圖像標(biāo)簽優(yōu)勢(shì) 時(shí)間:2020-09-17 10:12:06 圖像標(biāo)簽(Image Tagging),基于深度學(xué)習(xí)技術(shù),可準(zhǔn)確識(shí)別圖像中的視覺(jué)內(nèi)容,提供多種物體、場(chǎng)景和概念標(biāo)簽,具備目標(biāo)檢測(cè)和屬性識(shí)別等能力,幫助客戶準(zhǔn)確識(shí)別和理解圖像內(nèi)容 產(chǎn)品優(yōu)勢(shì) 識(shí)別準(zhǔn)確來(lái)自:百科和視頻)的數(shù)據(jù),用戶可以選擇不同的標(biāo)注類(lèi)型。 智能標(biāo)注:智能標(biāo)注是指基于當(dāng)前標(biāo)注階段的標(biāo)簽及圖片學(xué)習(xí)訓(xùn)練,選中系統(tǒng)中已有的模型進(jìn)行智能標(biāo)注,快速完成剩余圖片的標(biāo)注操作。目前只有“圖像分類(lèi)”和“物體檢測(cè)”類(lèi)型的數(shù)據(jù)集支持智能標(biāo)注功能。 團(tuán)隊(duì)標(biāo)注:ModelArts提供了團(tuán)隊(duì)標(biāo)注功能來(lái)自:專題Moderation 時(shí)間:2020-10-29 14:35:57 內(nèi)容審核 服務(wù)基于深度學(xué)習(xí)技術(shù)對(duì)圖像、視頻、文本內(nèi)容中的不合規(guī)信息進(jìn)行自動(dòng)檢測(cè),方便用戶對(duì)不合規(guī)信息快速處理,幫助用戶提高審核效率。 產(chǎn)品優(yōu)勢(shì) 檢測(cè)準(zhǔn)確 基于深度學(xué)習(xí)技術(shù)和大量的樣本庫(kù),幫助客戶快速準(zhǔn)確進(jìn)行違規(guī)內(nèi)容檢測(cè),維護(hù)內(nèi)容安全。來(lái)自:百科升業(yè)務(wù)效率。 內(nèi)容審核-圖像 內(nèi)容審核-圖像有以下應(yīng)用場(chǎng)景: 視頻直播 在互動(dòng)直播場(chǎng)景中,成千上萬(wàn)個(gè)房間并發(fā)直播,人工審核直播內(nèi)容幾乎不可能?;?span style='color:#C7000B'>圖像審核能力,可對(duì)所有房間內(nèi)容實(shí)時(shí)監(jiān)控,識(shí)別可疑房間并進(jìn)行預(yù)警。 場(chǎng)景優(yōu)勢(shì)如下: 準(zhǔn)確率高:基于改進(jìn)的深度學(xué)習(xí)算法,檢測(cè)準(zhǔn)確率高。 響應(yīng)速度快:視頻直播響應(yīng)速度速度小于0來(lái)自:百科華為云計(jì)算 云知識(shí) 圖像識(shí)別 圖像識(shí)別 時(shí)間:2020-10-30 15:12:04 圖像識(shí)別(Image Recognition),基于深度學(xué)習(xí)和大數(shù)據(jù),利用計(jì)算機(jī)對(duì)圖像進(jìn)行分析和理解,以識(shí)別各種不同模式的目標(biāo)和對(duì)象的技術(shù)?;?span style='color:#C7000B'>深度學(xué)習(xí)技術(shù),可準(zhǔn)確識(shí)別圖像中的視覺(jué)內(nèi)容,提供多種來(lái)自:百科不同特征范圍下的準(zhǔn)確率 與圖像分類(lèi)相似,但可選更多和目標(biāo)框相關(guān)的特征,如目標(biāo)框的交疊程度,目標(biāo)框的個(gè)數(shù)。 特征分布 與圖像分類(lèi)相似,但可選更多和目標(biāo)框相關(guān)的特征,如目標(biāo)框的交疊程度,目標(biāo)框的個(gè)數(shù)。 圖像語(yǔ)義分割 圖像語(yǔ)義分割評(píng)估指標(biāo)說(shuō)明 指標(biāo)名稱 子參數(shù) 說(shuō)明 精度評(píng)估 圖像類(lèi)別分布 數(shù)據(jù)集中不同類(lèi)別的像素個(gè)數(shù)統(tǒng)計(jì)。來(lái)自:百科需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:掌握學(xué)習(xí)算法定義與機(jī)器學(xué)習(xí)的流程;了解常用機(jī)器學(xué)習(xí)算法;了解超參數(shù)、梯度下降和交叉驗(yàn)證等概念。 課程大綱 1. 機(jī)器學(xué)習(xí)算法 2. 機(jī)器學(xué)習(xí)的分類(lèi) 3. 機(jī)器學(xué)習(xí)的整體流程來(lái)自:百科
- 【圖像分割】走進(jìn)基于深度學(xué)習(xí)的圖像分割
- 深度學(xué)習(xí)中的圖像分割:方法和應(yīng)用
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:圖像語(yǔ)義分割與對(duì)象檢測(cè)
- 深度學(xué)習(xí)實(shí)戰(zhàn)(六):使用 PyTorch 進(jìn)行 3D 醫(yī)學(xué)圖像分割
- 基于深度學(xué)習(xí)的圖像語(yǔ)義分割(Deep Learning-based Image Semantic Segmentation)
- 提升圖像分割精度:學(xué)習(xí)UNet++算法
- 深度學(xué)習(xí)|語(yǔ)義分割labelme的安裝和使用教程
- [Python圖像處理] 十九.圖像分割之基于K-Means聚類(lèi)的區(qū)域分割
- 《深度學(xué)習(xí)之圖像識(shí)別核心技術(shù)與案例實(shí)戰(zhàn)》—2 深度學(xué)習(xí)優(yōu)化基礎(chǔ)
- 《深度學(xué)習(xí)之圖像識(shí)別:核心技術(shù)與案例實(shí)戰(zhàn)》 ——2 深度學(xué)習(xí)優(yōu)化基礎(chǔ)