- 深度學(xué)習(xí)圖像分割發(fā)展 內(nèi)容精選 換一換
-
華為云計(jì)算 云知識(shí) 什么是圖像識(shí)別 什么是圖像識(shí)別 時(shí)間:2020-09-17 10:01:59 圖像識(shí)別( Image Recognition ),是指利用計(jì)算機(jī)對(duì)圖像進(jìn)行分析和理解,以識(shí)別各種不同模式的目標(biāo)和對(duì)象的技術(shù),包括圖像標(biāo)簽,名人識(shí)別等。 圖像識(shí)別以開放API(Application來(lái)自:百科,機(jī)載數(shù)據(jù)、文本數(shù)據(jù)、音頻數(shù)據(jù)、視頻數(shù)據(jù)等空管數(shù)據(jù)融合,有效支撐空管業(yè)務(wù)。 空管數(shù)據(jù)智能化,輔助業(yè)務(wù)決策 利用空管大數(shù)據(jù)融合,基于深度學(xué)習(xí)、強(qiáng)化學(xué)習(xí)等方法,面向智能化沖突管理、智能化空中交通流量管理、智能化規(guī)劃管理、智能化進(jìn)離場(chǎng)排序、智能化機(jī)場(chǎng)運(yùn)行等場(chǎng)景,輔助業(yè)務(wù)決策。 數(shù)據(jù)創(chuàng)新應(yīng)用,打造智慧化空管來(lái)自:百科
- 深度學(xué)習(xí)圖像分割發(fā)展 相關(guān)內(nèi)容
-
華為云計(jì)算 云知識(shí) 微服務(wù)的發(fā)展 微服務(wù)的發(fā)展 時(shí)間:2021-07-01 14:16:39 微服務(wù):互聯(lián)網(wǎng)高速發(fā)展以及傳統(tǒng)分布式、SOA架構(gòu)無(wú)法適應(yīng)快速的開發(fā)迭代等多重因素共同推動(dòng)下的產(chǎn)物。 微服務(wù)雛形:微服務(wù)架構(gòu)概念最早由Fred George在2012年的一次技術(shù)大會(huì)上所提出,拆分SOA服務(wù)實(shí)現(xiàn)解耦。來(lái)自:百科華為云計(jì)算 云知識(shí) 范式理論的發(fā)展歷史 范式理論的發(fā)展歷史 時(shí)間:2021-06-02 14:00:54 數(shù)據(jù)庫(kù) 1971~1972:Codd系統(tǒng)地提出了1NF、2NF和3NF的概念,討論了規(guī)范化問(wèn)題; 1974: Codd和Boyce共同提出了新范式,BCNF; 1976: Fagin提出了4NF;來(lái)自:百科
- 深度學(xué)習(xí)圖像分割發(fā)展 更多內(nèi)容
-
課程依托華為云EI服務(wù),帶領(lǐng)開發(fā)者學(xué)習(xí)和體驗(yàn)多項(xiàng)國(guó)際前沿AI技術(shù)!期望通過(guò)開發(fā)者的學(xué)習(xí),幫助企業(yè)解決實(shí)際問(wèn)題,實(shí)現(xiàn)生產(chǎn)自動(dòng)化、提升效率,同時(shí)這也是華為云奉獻(xiàn)給開發(fā)者們的一場(chǎng)技術(shù)盛宴。 課程簡(jiǎn)介 本課程主要內(nèi)容包括:機(jī)器學(xué)習(xí)、深度學(xué)習(xí)、 圖引擎 、圖像識(shí)別、 OCR文字識(shí)別 、 人臉識(shí)別 、視頻識(shí)別等前沿AI技術(shù)。來(lái)自:百科華為云計(jì)算 云知識(shí) 內(nèi)容審核 -圖像應(yīng)用場(chǎng)景 內(nèi)容審核-圖像應(yīng)用場(chǎng)景 時(shí)間:2020-09-15 16:28:30 內(nèi)容審核-圖像Moderation(Image),基于深度學(xué)習(xí)的圖像智能審核方案,準(zhǔn)確識(shí)別圖片中的涉黃、涉政涉暴、涉政敏感人物、廣告、不良場(chǎng)景等內(nèi)容,識(shí)別快速準(zhǔn)確,幫助企業(yè)降低人力審核成本來(lái)自:百科GaussDB 發(fā)展 GaussDB發(fā)展 云數(shù)據(jù)庫(kù) GaussDB,華為自主創(chuàng)新研發(fā)的分布式關(guān)系型數(shù)據(jù)庫(kù),布局全球7大區(qū)域,1000+專業(yè)人才,10年+技術(shù)積淀,企業(yè)核心數(shù)據(jù)上云信賴之選。你了解GaussDB的發(fā)展史嗎? GaussDB數(shù)據(jù)庫(kù) ,又稱為云數(shù)據(jù)庫(kù)GaussDB,華為自主創(chuàng)來(lái)自:專題升業(yè)務(wù)效率。 內(nèi)容審核-圖像 內(nèi)容審核-圖像有以下應(yīng)用場(chǎng)景: 視頻直播 在互動(dòng)直播場(chǎng)景中,成千上萬(wàn)個(gè)房間并發(fā)直播,人工審核直播內(nèi)容幾乎不可能?;?span style='color:#C7000B'>圖像審核能力,可對(duì)所有房間內(nèi)容實(shí)時(shí)監(jiān)控,識(shí)別可疑房間并進(jìn)行預(yù)警。 場(chǎng)景優(yōu)勢(shì)如下: 準(zhǔn)確率高:基于改進(jìn)的深度學(xué)習(xí)算法,檢測(cè)準(zhǔn)確率高。 響應(yīng)速度快:視頻直播響應(yīng)速度速度小于0來(lái)自:百科員進(jìn)行倒地檢測(cè),算法采用機(jī)器視覺圖像感知技術(shù),通過(guò)計(jì)算機(jī)視覺技術(shù)及深度學(xué)習(xí)技術(shù),對(duì)人員的精確檢測(cè)跟蹤,實(shí)現(xiàn)對(duì)人體倒地檢測(cè)分析檢測(cè)。 商品介紹 針對(duì)出現(xiàn)在視頻畫面中特定區(qū)域的人員進(jìn)行倒地檢測(cè),算法采用機(jī)器視覺圖像感知技術(shù),通過(guò)計(jì)算機(jī)視覺技術(shù)及深度學(xué)習(xí)技術(shù),對(duì)人員的精確檢測(cè)、跟蹤,實(shí)來(lái)自:云商店華為云計(jì)算 云知識(shí) 什么是 視頻標(biāo)簽 什么是視頻標(biāo)簽 時(shí)間:2020-09-15 15:42:21 視頻標(biāo)簽(簡(jiǎn)稱VCT),基于深度學(xué)習(xí)對(duì)視頻進(jìn)行場(chǎng)景分類、人物識(shí)別、 語(yǔ)音識(shí)別 、文字識(shí)別等多維度分析,形成層次化的分類標(biāo)簽。 功能描述 場(chǎng)景概念識(shí)別 基于對(duì)視頻中的場(chǎng)景信息的分析,輸出豐富而準(zhǔn)確的概念、場(chǎng)景標(biāo)簽來(lái)自:百科不同特征范圍下的準(zhǔn)確率 與圖像分類相似,但可選更多和目標(biāo)框相關(guān)的特征,如目標(biāo)框的交疊程度,目標(biāo)框的個(gè)數(shù)。 特征分布 與圖像分類相似,但可選更多和目標(biāo)框相關(guān)的特征,如目標(biāo)框的交疊程度,目標(biāo)框的個(gè)數(shù)。 圖像語(yǔ)義分割 圖像語(yǔ)義分割評(píng)估指標(biāo)說(shuō)明 指標(biāo)名稱 子參數(shù) 說(shuō)明 精度評(píng)估 圖像類別分布 數(shù)據(jù)集中不同類別的像素個(gè)數(shù)統(tǒng)計(jì)。來(lái)自:百科
- 【圖像分割】走進(jìn)基于深度學(xué)習(xí)的圖像分割
- 基于深度學(xué)習(xí)的圖像分割技術(shù)及應(yīng)用
- 深度學(xué)習(xí)中的圖像分割:方法和應(yīng)用
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:圖像語(yǔ)義分割與對(duì)象檢測(cè)
- 深度學(xué)習(xí)的發(fā)展歷程
- 深度學(xué)習(xí)實(shí)戰(zhàn)(六):使用 PyTorch 進(jìn)行 3D 醫(yī)學(xué)圖像分割
- 基于深度學(xué)習(xí)的圖像語(yǔ)義分割(Deep Learning-based Image Semantic Segmentation)
- 提升圖像分割精度:學(xué)習(xí)UNet++算法
- 深度學(xué)習(xí)|語(yǔ)義分割labelme的安裝和使用教程
- Matlab實(shí)現(xiàn)圖像分割