- 深度學(xué)習(xí)數(shù)據(jù)分類 內(nèi)容精選 換一換
-
/Pi1實(shí)例,滿足科學(xué)計(jì)算、深度學(xué)習(xí)訓(xùn)練、推理等計(jì)算場(chǎng)景 生態(tài)優(yōu)秀 完善的生態(tài)環(huán)境,全面支持多種GPU應(yīng)用程序、深度學(xué)習(xí)框架。G系列支持OpenGL、DirectX;P系列支持CUDA、OpenCL 完善的生態(tài)環(huán)境,全面支持多種GPU應(yīng)用程序、深度學(xué)習(xí)框架。G系列支持OpenGL來(lái)自:專題來(lái)自:百科
- 深度學(xué)習(xí)數(shù)據(jù)分類 相關(guān)內(nèi)容
-
全流程 AI開(kāi)發(fā)平臺(tái) 介紹-ModelArts 第2章 AI模型開(kāi)發(fā)-圖像分類 第3章 AI模型開(kāi)發(fā)-物體檢測(cè) 第4章 AI進(jìn)階篇階段總結(jié)直播&問(wèn)題答疑 AI開(kāi)發(fā)平臺(tái)ModelArts ModelArts是面向開(kāi)發(fā)者的一站式AI開(kāi)發(fā)平臺(tái),為機(jī)器學(xué)習(xí)與深度學(xué)習(xí)提供海量數(shù)據(jù)預(yù)處理及半自動(dòng)化標(biāo)注、大規(guī)模分布式Trai來(lái)自:百科第7章 自然語(yǔ)言處理 第8章 語(yǔ)音識(shí)別 AI開(kāi)發(fā)平臺(tái)ModelArts ModelArts是面向開(kāi)發(fā)者的一站式AI開(kāi)發(fā)平臺(tái),為機(jī)器學(xué)習(xí)與深度學(xué)習(xí)提供海量數(shù)據(jù)預(yù)處理及半自動(dòng)化標(biāo)注、大規(guī)模分布式Training、自動(dòng)化模型生成,及端-邊-云模型按需部署能力,幫助用戶快速創(chuàng)建和部署模型,管理全周期AI工作流。來(lái)自:百科
- 深度學(xué)習(xí)數(shù)據(jù)分類 更多內(nèi)容
-
時(shí)間:2020-10-30 15:12:04 圖像識(shí)別 ( Image Recognition ),基于深度學(xué)習(xí)和大數(shù)據(jù),利用計(jì)算機(jī)對(duì)圖像進(jìn)行分析和理解,以識(shí)別各種不同模式的目標(biāo)和對(duì)象的技術(shù)?;?span style='color:#C7000B'>深度學(xué)習(xí)技術(shù),可準(zhǔn)確識(shí)別圖像中的視覺(jué)內(nèi)容,提供多種物體、場(chǎng)景和概念標(biāo)簽,具備目標(biāo)檢測(cè)和屬性識(shí)別等能來(lái)自:百科手把手教你玩轉(zhuǎn) 人臉識(shí)別 ,初探深度學(xué)習(xí)。 課程簡(jiǎn)介 本課程主要內(nèi)容包括:人臉識(shí)別原理、機(jī)器如何提取圖像的特征。 課程目標(biāo) 通過(guò)本課程學(xué)習(xí),了解機(jī)器學(xué)習(xí)的方法及快速掌握人臉識(shí)別應(yīng)用。 課程大綱 第1節(jié) 機(jī)器學(xué)習(xí)內(nèi)容回顧 第2節(jié) 機(jī)器是如何進(jìn)行圖像分類 第3節(jié) 圖像的特征提取 第4節(jié) 初探深度學(xué)習(xí) 第5節(jié)來(lái)自:百科什么是聯(lián)邦學(xué)習(xí) 文檔導(dǎo)讀 簡(jiǎn)介 職業(yè)認(rèn)證考試的學(xué)習(xí)方法 孤立森林:參數(shù)說(shuō)明 神經(jīng)網(wǎng)絡(luò)介紹 安裝須知:安裝場(chǎng)景 線上培訓(xùn)課程介紹 什么是自然語(yǔ)言處理:首次使用NLP 華為云培訓(xùn)體系 典型AI庫(kù) 腳本樣例:Zeppelin 自動(dòng)學(xué)習(xí)簡(jiǎn)介:自動(dòng)學(xué)習(xí)功能介紹 自動(dòng)學(xué)習(xí)簡(jiǎn)介:自動(dòng)學(xué)習(xí)功能介紹來(lái)自:百科學(xué)習(xí) 區(qū)塊鏈 技術(shù) 課程學(xué)習(xí),動(dòng)手實(shí)驗(yàn),技能認(rèn)證,全面掌握區(qū)塊鏈前沿技術(shù) 在線課程 區(qū)塊鏈概念了解 了解區(qū)塊鏈的基本概念,為學(xué)習(xí)奠定基礎(chǔ)。 區(qū)塊鏈全景實(shí)踐課 本期課程結(jié)合華為云區(qū)塊鏈服務(wù) BCS ,從入門(mén)到實(shí)踐,循序漸進(jìn)一站式學(xué)習(xí)。5節(jié)實(shí)戰(zhàn)精品課,涵蓋B CS 基礎(chǔ)概念、各行各業(yè)的應(yīng)用現(xiàn)狀來(lái)自:專題0Day漏洞修復(fù) 防CC攻擊 防網(wǎng)頁(yè)篡改 防數(shù)據(jù)泄露 惡意訪問(wèn)者通過(guò)SQL注入,網(wǎng)頁(yè)木馬等攻擊手段,入侵網(wǎng)站數(shù)據(jù)庫(kù),竊取業(yè)務(wù)數(shù)據(jù)或其他敏感信息 能夠做到 精準(zhǔn)識(shí)別 采用語(yǔ)義分析+正則表達(dá)式雙引擎,對(duì)流量進(jìn)行多維度精確檢測(cè),精準(zhǔn)識(shí)別攻擊流量 變形攻擊檢測(cè) 支持11種編碼還原,可識(shí)別更多變形攻擊,降低 Web應(yīng)用防火墻 被繞過(guò)的風(fēng)險(xiǎn)來(lái)自:專題圖1 圖像標(biāo)簽 示例圖 名人識(shí)別 利用深度神經(jīng)網(wǎng)絡(luò)模型對(duì)圖片內(nèi)容進(jìn)行檢測(cè),準(zhǔn)確識(shí)別圖像中包含的影視明星及網(wǎng)紅人物。 翻拍識(shí)別 利用深度神經(jīng)網(wǎng)絡(luò)算法判斷條形碼圖片為原始拍攝,還是經(jīng)過(guò)二次翻拍、打印翻拍等手法二次處理的圖片。利用翻拍識(shí)別可以檢測(cè)出經(jīng)過(guò)二次處理的不合規(guī)范圖片,使得統(tǒng)計(jì)數(shù)據(jù)更準(zhǔn)確、有效。 圖像識(shí)別來(lái)自:百科產(chǎn)品設(shè)計(jì)改善,提升產(chǎn)品質(zhì)量 優(yōu)勢(shì) 多數(shù)據(jù)源集成 針對(duì)多種數(shù)據(jù)源提供統(tǒng)一數(shù)據(jù)探索,快速發(fā)現(xiàn)有價(jià)值數(shù)據(jù) 多種算法內(nèi)置 基于已有時(shí)間序列算法,對(duì)產(chǎn)品缺陷進(jìn)行預(yù)測(cè),挖掘須重點(diǎn)關(guān)注質(zhì)量的產(chǎn)品 專業(yè)數(shù)據(jù)倉(cāng)庫(kù) 專業(yè)數(shù)倉(cāng)支持設(shè)計(jì)應(yīng)用多維分析,快速響應(yīng) 智能設(shè)備維護(hù) 預(yù)測(cè)性維護(hù),根據(jù)系統(tǒng)過(guò)去和現(xiàn)在來(lái)自:百科、軟件工程師等學(xué)習(xí)。 課程目標(biāo) 1.了解企業(yè)敏捷轉(zhuǎn)型經(jīng)常踩到的50個(gè)坑:總結(jié)各個(gè)企業(yè)開(kāi)展敏捷經(jīng)常踩到的坑,幫助你避開(kāi)錯(cuò)誤路線 2.深度學(xué)習(xí)敏捷實(shí)踐及敏捷轉(zhuǎn)型的策略:了解敏捷全套實(shí)踐和策略,包括Scrum、看板、敏捷度量、敏捷領(lǐng)導(dǎo)力、如何系統(tǒng)化領(lǐng)導(dǎo)敏捷轉(zhuǎn)型等 3.學(xué)習(xí)企業(yè)轉(zhuǎn)型的案例來(lái)自:百科AI開(kāi)發(fā)痛點(diǎn)分析 第3節(jié) ModelArts介紹 第4節(jié) 圖像分類Demo演示 第5節(jié) 自動(dòng)學(xué)習(xí)Demo演示 第6節(jié) 課程總結(jié) AI開(kāi)發(fā)平臺(tái)ModelArts ModelArts是面向開(kāi)發(fā)者的一站式AI開(kāi)發(fā)平臺(tái),為機(jī)器學(xué)習(xí)與深度學(xué)習(xí)提供海量數(shù)據(jù)預(yù)處理及半自動(dòng)化標(biāo)注、大規(guī)模分布式Training來(lái)自:百科
- 基于深度學(xué)習(xí)的油藏?cái)?shù)據(jù)分類與識(shí)別
- 深度學(xué)習(xí)分類任務(wù)常用評(píng)估指標(biāo)
- Python深度學(xué)習(xí)入門(mén)——手寫(xiě)數(shù)字分類
- 深度學(xué)習(xí)技術(shù)在測(cè)井?dāng)?shù)據(jù)分類與識(shí)別中的應(yīng)用
- 深度學(xué)習(xí)進(jìn)階,Keras視頻分類
- 深度學(xué)習(xí)圖片分類CNN模板
- 深度學(xué)習(xí)卷積神經(jīng)網(wǎng)絡(luò)垃圾分類系統(tǒng) - 深度學(xué)習(xí) 神經(jīng)網(wǎng)絡(luò) 圖像識(shí)別 垃圾分類
- 深度學(xué)習(xí):LeNet-5實(shí)現(xiàn)服裝分類(PyTorch)
- 深度學(xué)習(xí)基礎(chǔ)知識(shí)--2.3 分類問(wèn)題算法
- 深度學(xué)習(xí)修煉(六)——神經(jīng)網(wǎng)絡(luò)分類問(wèn)題
- 開(kāi)發(fā)深度學(xué)習(xí)模型
- 定義數(shù)據(jù)分類
- 數(shù)據(jù)分類預(yù)測(cè)
- 數(shù)據(jù)分類接口
- 使用ModelArts Standard自動(dòng)學(xué)習(xí)實(shí)現(xiàn)垃圾分類
- 使用自動(dòng)學(xué)習(xí)實(shí)現(xiàn)文本分類
- 使用自動(dòng)學(xué)習(xí)實(shí)現(xiàn)聲音分類
- 部署NGC容器環(huán)境以構(gòu)建深度學(xué)習(xí)開(kāi)發(fā)環(huán)境
- 數(shù)據(jù)分類管理
- 移除數(shù)據(jù)分類