- 深度學(xué)習(xí)基礎(chǔ)設(shè)施平臺(tái) 內(nèi)容精選 換一換
-
來自:百科華為云計(jì)算 云知識(shí) GraphQL文檔手冊(cè)學(xué)習(xí)與基本介紹 GraphQL文檔手冊(cè)學(xué)習(xí)與基本介紹 時(shí)間:2021-07-09 11:22:58 GraphQL 既是一種用于 API 的查詢語言也是一個(gè)滿足你數(shù)據(jù)查詢的運(yùn)行時(shí)。 GraphQL文檔手冊(cè)學(xué)習(xí)與信息參考網(wǎng)址:https://graphql來自:百科
- 深度學(xué)習(xí)基礎(chǔ)設(shè)施平臺(tái) 相關(guān)內(nèi)容
-
Blitz文檔手冊(cè)學(xué)習(xí)與基本介紹 Blitz文檔手冊(cè)學(xué)習(xí)與基本介紹 時(shí)間:2021-07-09 14:18:03 Blitz 是基于 Next.js 構(gòu)建的 React 全棧開發(fā)框架。Blitz 的誕生受到 Ruby on Rails 框架的啟發(fā)。 Blitz文檔手冊(cè)學(xué)習(xí)與信息參考網(wǎng)址:https://www來自:百科第7章 有監(jiān)督學(xué)習(xí)-決策樹 第8章 有監(jiān)督學(xué)習(xí)-集成算法概述 第9章 有監(jiān)督學(xué)習(xí)-Bagging 第10章 有監(jiān)督學(xué)習(xí)-隨機(jī)森林 第11章 有監(jiān)督學(xué)習(xí)-Boosting 第12章 有監(jiān)督學(xué)習(xí)-Adaboost 第13章 有監(jiān)督學(xué)習(xí)-GBDT 第14章 有監(jiān)督學(xué)習(xí)-Xgboost 第15章來自:百科
- 深度學(xué)習(xí)基礎(chǔ)設(shè)施平臺(tái) 更多內(nèi)容
-
→點(diǎn)擊直達(dá)華為云學(xué)院,get更多新技能! 溫馨提示:詳情信息請(qǐng)以課程詳情頁(yè)信息為準(zhǔn)。 AI開發(fā)平臺(tái)ModelArts ModelArts是面向開發(fā)者的一站式AI開發(fā)平臺(tái),為機(jī)器學(xué)習(xí)與深度學(xué)習(xí)提供海量數(shù)據(jù)預(yù)處理及半自動(dòng)化標(biāo)注、大規(guī)模分布式Training、自動(dòng)化模型生成,及端-邊-云模型按需部署能力,幫助用戶快速創(chuàng)建和部署模型,管理全周期AI工作流。來自:百科
- 《深入理解AutoML和AutoDL:構(gòu)建自動(dòng)化機(jī)器學(xué)習(xí)與深度學(xué)習(xí)平臺(tái)》 —1.1.4 機(jī)器學(xué)習(xí)與深度學(xué)習(xí)
- 《深入理解AutoML和AutoDL:構(gòu)建自動(dòng)化機(jī)器學(xué)習(xí)與深度學(xué)習(xí)平臺(tái)》 —1.4 深度學(xué)習(xí)的發(fā)展
- 《深入理解AutoML和AutoDL:構(gòu)建自動(dòng)化機(jī)器學(xué)習(xí)與深度學(xué)習(xí)平臺(tái)》 —1.3 深度學(xué)習(xí)的崛起之路
- 《MXNet深度學(xué)習(xí)實(shí)戰(zhàn)》—1.1.3 深度學(xué)習(xí)
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:跨平臺(tái)模型移植與部署
- Edge Impulse:面向微型機(jī)器學(xué)習(xí)的MLOps平臺(tái)深度解析
- 深度學(xué)習(xí)
- 《AI安全之對(duì)抗樣本入門》—3 常見深度學(xué)習(xí)平臺(tái)簡(jiǎn)介
- 《MXNet深度學(xué)習(xí)實(shí)戰(zhàn)》—1.2 深度學(xué)習(xí)框架
- 《深入理解AutoML和AutoDL:構(gòu)建自動(dòng)化機(jī)器學(xué)習(xí)與深度學(xué)習(xí)平臺(tái)》 —2.3 現(xiàn)有AutoML平臺(tái)產(chǎn)品