- 深度學(xué)習(xí) 推理 intel 內(nèi)容精選 換一換
-
1/Pi1實(shí)例,滿足科學(xué)計(jì)算、深度學(xué)習(xí)訓(xùn)練、推理等計(jì)算場(chǎng)景 G系列G3/G1提供多種顯存,滿足圖形圖像場(chǎng)景。P系列提供P2v/P1/Pi1實(shí)例,滿足科學(xué)計(jì)算、深度學(xué)習(xí)訓(xùn)練、推理等計(jì)算場(chǎng)景 生態(tài)優(yōu)秀 完善的生態(tài)環(huán)境,全面支持多種GPU應(yīng)用程序、深度學(xué)習(xí)框架。G系列支持OpenGL、來(lái)自:專題AI初學(xué)者:使用訂閱算法構(gòu)建模型實(shí)現(xiàn)花卉識(shí)別 推理部署最佳實(shí)踐 使用自定義鏡像創(chuàng)建AI應(yīng)用 推理服務(wù)訪問(wèn)公網(wǎng) 推理服務(wù)端到端運(yùn)維 查看更多 收起 ModelArts相關(guān)精選推薦 ModelArts推理部署_AI應(yīng)用_部署服務(wù)-華為云 ModelArts推理部署_在線服務(wù)_訪問(wèn)在線服務(wù)-華為云來(lái)自:專題
- 深度學(xué)習(xí) 推理 intel 相關(guān)內(nèi)容
-
很多AI開(kāi)發(fā)者開(kāi)發(fā)者在訓(xùn)練得到AI模型之后,必須得在設(shè)備上實(shí)現(xiàn)模型的推理才能獲得相應(yīng)的AI能力,但目前AI模型不能直接在設(shè)備上運(yùn)行起來(lái)。這就意味著,開(kāi)發(fā)者還得有一套對(duì)應(yīng)的推理框架才能真正實(shí)現(xiàn)AI與IoT設(shè)備的結(jié)合。 另外,目前深度學(xué)習(xí)雖然可以在很多領(lǐng)域超越傳統(tǒng)算法,不過(guò)真正用到實(shí)際產(chǎn)品中卻要來(lái)自:百科特別是深度學(xué)習(xí)的大數(shù)據(jù)集,讓訓(xùn)練結(jié)果可重現(xiàn)。 2、極“快”致“簡(jiǎn)”模型訓(xùn)練 自研的MoXing深度學(xué)習(xí)框架,更高效更易用,大大提升訓(xùn)練速度。 3、多場(chǎng)景部署 支持模型部署到多種生產(chǎn)環(huán)境,可部署為云端在線推理和批量推理,也可以直接部署到端和邊。 4、自動(dòng)學(xué)習(xí) 支持多種自動(dòng)學(xué)習(xí)能力,來(lái)自:專題
- 深度學(xué)習(xí) 推理 intel 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 推理模型的遷移與調(diào)優(yōu) 推理模型的遷移與調(diào)優(yōu) 時(shí)間:2020-12-08 10:39:19 本課程主要介紹如何將第三方框架訓(xùn)練出來(lái)的模型轉(zhuǎn)換成昇騰專用模型,并進(jìn)行調(diào)優(yōu)。 目標(biāo)學(xué)員 AI領(lǐng)域的開(kāi)發(fā)者 課程目標(biāo) 通過(guò)對(duì)教材的解讀+實(shí)戰(zhàn)演示,使學(xué)員學(xué)會(huì)使用模型轉(zhuǎn)換工具遷移所需要的預(yù)訓(xùn)練模型。來(lái)自:百科華為云Stack 支持在信任邊界缺失的多個(gè)參與方之間建立互信聯(lián)盟,實(shí)現(xiàn)跨組織、跨行業(yè)的多方數(shù)據(jù)融合分析和多方聯(lián)合學(xué)習(xí)建模。 4.靈活多態(tài) 支持對(duì)接主流數(shù)據(jù)源的聯(lián)合數(shù)據(jù)分析;支持對(duì)接多種深度學(xué)習(xí)框架的聯(lián)邦計(jì)算;通過(guò)支持控制流和數(shù)據(jù)流的分離,讓用戶不用關(guān)注計(jì)算任務(wù)拆解和組合過(guò)程。 華為云Stack來(lái)自:百科打手機(jī)智能檢測(cè)算法是基于人工智能技術(shù)領(lǐng)域中的深度學(xué)習(xí)技術(shù),結(jié)合大數(shù)據(jù),使用大量的人員打手機(jī)圖片數(shù)據(jù)采用監(jiān)督學(xué)習(xí)的方式進(jìn)行智能檢測(cè)訓(xùn)練。算法采用深度卷積神經(jīng)網(wǎng)絡(luò)提取數(shù)據(jù)中關(guān)鍵特征,忽略圖片數(shù)據(jù)中的不相關(guān)信息,并結(jié)合業(yè)務(wù)邏輯進(jìn)行推理判斷。 將訓(xùn)練完成后的算法加載到AI攝像機(jī)內(nèi)部,利用攝像機(jī)內(nèi)部AI芯片強(qiáng)大的分析推理能力,來(lái)自:云商店需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:掌握學(xué)習(xí)算法定義與機(jī)器學(xué)習(xí)的流程;了解常用機(jī)器學(xué)習(xí)算法;了解超參數(shù)、梯度下降和交叉驗(yàn)證等概念。 課程大綱 1. 機(jī)器學(xué)習(xí)算法 2. 機(jī)器學(xué)習(xí)的分類 3. 機(jī)器學(xué)習(xí)的整體流程來(lái)自:百科GPU加速型云服務(wù)器包括G系列和P系列兩類。其中: G系列:圖形加速型 彈性云服務(wù)器 ,適合于3D動(dòng)畫(huà)渲染、CAD等。 P系列:計(jì)算加速型或推理加速型彈性云服務(wù)器,適合于深度學(xué)習(xí)、科學(xué)計(jì)算、CAE等。 GPU加速實(shí)例總覽 GPU加速型云服務(wù)器包括圖形加速型(G系列)和計(jì)算加速型(P系列)兩類。 圖像加速G系列來(lái)自:百科AI技術(shù)領(lǐng)域課程--機(jī)器學(xué)習(xí) AI技術(shù)領(lǐng)域課程--深度學(xué)習(xí) AI技術(shù)領(lǐng)域課程--生成對(duì)抗網(wǎng)絡(luò) AI技術(shù)領(lǐng)域課程--強(qiáng)化學(xué)習(xí) AI技術(shù)領(lǐng)域課程--圖網(wǎng)絡(luò) AI技術(shù)領(lǐng)域課程--機(jī)器學(xué)習(xí) AI技術(shù)領(lǐng)域課程--深度學(xué)習(xí) AI技術(shù)領(lǐng)域課程--生成對(duì)抗網(wǎng)絡(luò) AI技術(shù)領(lǐng)域課程--強(qiáng)化學(xué)習(xí) AI技術(shù)領(lǐng)域課程--圖網(wǎng)絡(luò)來(lái)自:專題
- 初識(shí)深度學(xué)習(xí)推理框架 | 簡(jiǎn)記
- XEngine-深度學(xué)習(xí)推理優(yōu)化
- 【OpenVINO?】使用OpenVINO?C++ 異步推理接口在Intel IGPU部署YOLOv8實(shí)現(xiàn)80+FPS視頻推理
- 在華為云上使用彈性GPU服務(wù)加速深度學(xué)習(xí)訓(xùn)練和推理
- Intel IPU
- MCUNetV2:面向微型深度學(xué)習(xí)的內(nèi)存高效分塊推理方法——論文解讀
- 一文讀懂業(yè)界主流模型推理部署框架
- Nat. Mach. Intel. | IBM RXN: 深度學(xué)習(xí)在化學(xué)反應(yīng)分類上大放異彩
- 【AI理論】CNN已老,GNN來(lái)了:重磅論文講述深度學(xué)習(xí)的因果推理(附資源)
- 《MXNet深度學(xué)習(xí)實(shí)戰(zhàn)》—1.1.3 深度學(xué)習(xí)